
Workload Simulator

Utilities Guide
Version 1 Release 1

SC31-8947-01

���

Workload Simulator

Utilities Guide
Version 1 Release 1

SC31-8947-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
285.

Second Edition (October 2015)

This document applies to the Workload Simulator Version 1 Release 1 (program number 5655-I39), an IBM licensed
program, which runs under the following operating systems:

MVS/370 (MVS/SP Version 1 or later)

MVS/Extended Architecture (MVS/SP Version 2 or later)

MVS/Enterprise System Architecture (MVS/SP Version 3 or later)

OS/390

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

© Copyright IBM Corporation 1985, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

About this book xiii
Who should read this book xiii
How to use this book xiii
Where to find more information xv

Part 1. General utilities 1

Chapter 1. Introducing WSim utilities . . 3
What is Workload Simulator? 3
WSim general utilities programs 3
Script generating utility programs 4

Interactive Data Capture 4
Log Script Generator Utility 4
SNA 3270 Reformatter Utility 4
Script Generator Utility 4
TCP/IP Trace Script Generator Utility 4

Chapter 2. Running WSim with the
WSim/ISPF Interface 5
Invoking the WSim/ISPF Interface 5
Getting help from the WSim/ISPF Interface 7
Navigating the panels 7
Entering data on panel fields 8

Entering and processing commands on the
command line 8
Entering data set information 8

Using function keys 9

Chapter 3. Using the Preprocessor and
ITPSYSIN to preprocess WSim scripts . 11
Using the Preprocessor 11

Understanding Preprocessor input 11
Understanding Preprocessor output 12
Using the cross-reference report 16
Running the Preprocessor 18
Understanding Preprocessor return codes . . . 21

Using ITPSYSIN 22
Understanding ITPSYSIN input and output. . . 22
Running ITPSYSIN 22
Understanding ITPSYSIN return codes 23

Chapter 4. Using the Loglist Utility to
format the log data set 25
Information you can obtain with the Loglist Utility 25

SNA resource records 25
TCP/IP resource records 26
Loglist data output and display 26
Informational records 26
LOG records 27

Message trace records 27
STL trace records 27
CPI-C trace records 28
Verification reports 28

Log record header 33
Log display attribute table header 34
Running the Loglist Utility 35

Coding the output format 35
Using the WSim/ISPF Interface. 36
Using Loglist Utility execution parameters . . . 36
Using JCL 37
Using a TSO CLIST. 39
Understanding sample output 39
Understanding Loglist Utility return codes . . . 43

Chapter 5. Specifying loglist control
commands 45
Coding the control commands 45
Understanding control command coding
conventions 45
Control command categories 46

General control commands 46
Record selection 46
APPCLU primary resource selection command 47
CNSL and NOCNSL data type selection
commands. 48
CTRC and NOCTRC data type selection
commands. 48
DATA and NODATA data type selection
commands. 49
DEV secondary resource selection command . . 49
DSPLY and NODSPLY data type selection
commands. 50
END control command 50
EXDEV secondary resource selection command 51
EXIT control command 51
EXTERM secondary resource selection command 52
EXTP secondary resource selection command . . 52
FMTSNA and NOFMT control commands . . . 53
HEADER control command 54
INFO and NOINFO data type selection
commands. 54
LOG and NOLOG data type selection commands 54
MSGTXT overall selection command 55
MTRC and NOMTRC data type selection
commands. 55
NOHDR data type selection command 55
NTWRK overall selection command 56
P control command. 56
RUN control command 56
STRC and NOSTRC data type selection
commands. 56
TCPIP primary resource selection command . . 57
TERM secondary resource selection command . . 57
TIME overall selection command 58

© Copyright IBM Corp. 1985, 2015 iii

||

TP secondary resource selection command . . . 59
UPCASE control command 59
VERIFY and NOVERIFY data type selection
commands. 60
VTAMAPPL primary resource selection
command 60
* control command 61

Chapter 6. Using the Log Compare
Utility to compare log data sets 63
Understanding DSPY records 63

Comparing DSPY records using the Log
Compare Utility 64
Identifying differences in DSPY records 65
Comparing DSPY records in networks with
multiple devices 66

Controlling what is compared 66
Understanding selection commands 66
Understanding process commands. 68

Synchronizing two log data sets 70
Specifying synchronization with selection
commands. 70
Example of log data set synchronization 71

Information you can obtain with the Log Compare
Utility 72

Active Command List 73
Complete Records List. 73
Compare List 74
Differences Report 75
Summary Report 76

Running the Log Compare Utility 76
Using the WSim/ISPF Interface. 77
Using Log Compare Utility execution parameters 77
Data set requirements 78
Using JCL 78
Using a TSO CLIST. 79
Understanding sample output 79
Understanding Log Compare Utility return codes 89

Chapter 7. Specifying Log Compare
Utility control commands. 91
Coding the control commands 91
Understanding control command coding
conventions 91
Selection commands 92

DEV command 92
ERRCOUNT command 92
EXCLUDE command 93
LU command. 94
MSGTXT command. 95
NTWRK command 95
SELECT command 96
START command 97
SYNCPOINT command 98
TCPIP command 99
TERM command 99
VTAMAPPL command 100

Process commands 100
ATTRIBUTE command 100
CHARATTR command 101

CHECKONLY command 101
CURSOR command 103
END command. 103
HEADER command 103
MASK command 103
P command 105
REPORT command 105
RUN command. 106
UPPERCASE command 106
* Command 106

Chapter 8. Using the Response Time
Utility to analyze response times . . . 107
Information you can obtain with the Response
Time Utility 107

Response time reports 107
Transaction record listing 110
Response listing file 111
Response Time Frequency Distribution 112
Cumulative Response Time Distribution . . . 112
Time Graph of Responses 112

Running the Response Time Utility 113
Calculating response times for terminals . . . 113
Calculating response times for transactions . . 115
Estimating virtual storage 118
Using the WSim/ISPF Interface 119
Using Response Time Utility execution
parameters 119
Using JCL 120
Using a TSO CLIST 121
Understanding sample output 122
Understanding Response Time Utility return
codes 127

Chapter 9. Specifying Response Time
Utility control commands 129
Coding the control commands. 130
Understanding control command conventions . . 130

APPCLU—Define an APPC LU for response
time analysis 130
BTRANS—Begin transaction definition 131
CGRAPH—Define scale for cumulative
distribution graph 134
END—End response time processing 134
ETRANS—End transaction definition 135
EXIT—Define user exit 137
EXTERM—Exclude terminal 138
GRAPH—Define scale for frequency distribution
graph 139
HEADER—Define output report header . . . 139
LENGTH—Define minimum record lengths . . 140
MSGTXT—Define a message generation deck
for response time analysis 140
NTWRK—Define a network for response time
analysis 141
P—Terminate console input 141
PERCENT—Define percentile values 141
PROCESS—Define response time type 142
REPORT—Define output options 142
RUN—Perform response time analysis 143

iv WSim V1R1 Utilities Guide

TCPIP—Define a TCP/IP connection for
response time analysis 144
TERM—Define a terminal for response time
analysis 145
TGRAPH—Define time graph parameters . . . 146
TIME—Specify time limits 147
TPRINT—Print list of transaction records . . . 147
TRUNC—Truncate time stamps 148
UNLOCK—Define use of keyboard unlock
messages 148
VTAMAPPL—Define a VTAMAPPL for
response time analysis 149
*—Comment 149

Chapter 10. Using ITPECHO to test
WSim simulated resources 151
Understanding ITPECHO requirements. 151

Programming requirements. 151
Storage requirements 151
SNA considerations 152
Functions available with 3270 devices 152
Functions available with non-3270 devices. . . 156

Installing ITPECHO 156
Running ITPECHO 157

Using ITPECHO execution parameters 157
Using JCL 158
Using a TSO CLIST 158

Using ITPECHO operator commands 158
Logging on to ITPECHO 158

Understanding ITPECHO return codes 159

Chapter 11. Simulated resource type
codes. 161

Chapter 12. Understanding message
logging 163
What is message logging? 163
How messages are time stamped 164

Time stamps for records that are not message
data records 164
Time stamps for message data records 165

How data messages are logged 166
Logging FTP command data and FTP file data 166

CPI-C transaction program message logging . . . 166

Chapter 13. Using the TCP/IP Trace
Utility 167
Running the TCP/IP Trace Utility 167

Using the WSim/ISPF Interface 168
Using TCP/IP Trace Utility execution
parameters 168
Using JCL 169
Understanding TCP/IP Trace Utility return
codes 169

Chapter 14. Using the TCP/IP Trace
Formatting Utility. 171
Running the TCP/IP Trace Formatting Utility . . 171

Using the WSim/ISPF Interface 171

Using JCL 171
Using a TSO CLIST 172
Understanding TCP/IP Trace Formatting Utility
return codes 172

Part 2. Script generating utilities 173

Chapter 15. Generating scripts
interactively with IDC 175
Setting up IDC 176

Defining IDC to VTAM 176
Allocating IDC data sets. 176

Starting IDC. 178
Defining the IDC job stream 178
Running IDC from the WSim/ISPF Interface 178
Running IDC as an MVS batch job 178
Running IDC as an MVS started procedure . . 178
Running IDC from a CLIST 179
Specifying execution parameters 179

Establishing sessions 181
Logging on to IDC 181
Logging on to your application 182

Capturing the data 184
Capturing the session initiation 184
Using escape actions 184
Controlling data capture. 186
Adding statements to the IDC log 186
Changing log data sets 188
Changing escape keys 189
Capturing session termination 190

Stopping IDC 190
Generating scripts 191

Choosing the type of script to generate 191
Generating an STL program 191
Generating a message generation deck 194
Adding panel verification logic to the script . . 197
Generating user delays 202

Modifying IDC-generated scripts 205
Using help 206
Debugging problems 206

Analyzing the IDC log 206
Analyzing the IDC trace. 207
Understanding IDC restrictions 207

Creating network definitions 209
Controlling the flow of script execution . . . 210
Synchronizing multiple scripts. 210
Understanding IDC return codes 211

Running WSim 211
Generating Telnet 3270 scripts 211

Chapter 16. Generating scripts from
IDC or WSim log data sets. 213
Setting up ITPLSGEN 213
Running ITPLSGEN 214

Using JCL to run ITPLSGEN 214
Using a CLIST to run ITPLSGEN 214
Running ITPLSGEN from the WSim/ISPF
Interface 214
Specifying execution parameters 215

Using control commands 215

Contents v

|
||
||
||
|
||
||
|
||

|
||
||
||

||
||
|
||

Entering control commands 215
Defining the STL program or message
generation deck name 216
Specifying input and output 216
Choosing the type of script to generate 217
Specifying devices 217
Defining user delays 218
Generating changed data fields 218
Verifying panels 219
Entering commands from the input data stream 219
Generating debugging comments 219
Starting ITPLSGEN 220
Ending ITPLSGEN 220

Generating the output 220

Chapter 17. Generating 3270 scripts
from captured traces 221
Planning to use the SNA 3270 Reformatter Utility 221
Allocating SNA 3270 Reformatter Utility data sets 222
Running the SNA 3270 Reformatter Utility . . . 222

Running the SNA 3270 Reformatter Utility as a
batch job 222
Running the SNA 3270 Reformatter Utility from
an MVS CLIST 222
Running the SNA 3270 Reformatter Utility from
the WSim/ISPF Interface 223
Specifying execution parameters 223

Understanding SNA 3270 Reformatter Utility
output. 223

Understanding the Summary Report 223
Understanding the Eligible Terminal Report . . 224
Understanding the Ineligible Terminal Report 226

Using the WSim log data set 226
Formatting the WSim log data set 227
Generating a WSim script 227
Calculating response times 227
Comparing WSim log data sets 228

Understanding SNA 3270 Reformatter Utility
restrictions 228
SNA 3270 Reformatter Utility return codes . . . 229

Chapter 18. Using the Script
Generator Utility 231
Operational suggestions 232

Capture single terminal traffic 232
Capture system terminal traffic 233

Step 1. Obtaining a trace of system activity . . . 233
NPM VTAM Log 233
VTAM buffer trace 234
Your own capture routine 234
Where to take the trace 235

Step 2. Reformatting the trace output 235
ITPVTBRF 235

Step 3. Sorting the trace data 237
Step 4. Defining the network 238
Step 5. Generating the message generation decks 239

ITPSGEN terminal types supported 240
Running ITPSGEN 240
ITPSGEN control commands 242
DELAY and NODELAY commands 242

LIMIT and NOLIMIT commands 243
LIST and NOLIST commands 243
NTWRK and NONTWRK commands 244
REPORT command 244
RESP and NORESP commands 245
SEQOUT and NOSEQOUT commands 245
STL and NOSTL commands 246
TIME commands 246
* Comment 247

ITPSGEN message generation decks 247
ITPSGEN updated networks 248
ITPSGEN sequential output format 248
ITPSGEN printed output 249
SEQOUT data set 249
Sample SEQOUT data set 249
ITPSGEN return codes 251
Sample output for ITPSGEN 251

Summary Report. 251
Detail Report 251

Using JCL to run ITPSGEN. 252
Using a CLIST to run ITPSGEN 253
Running ITPSGEN from the WSim/ISPF Interface 253
STL translation 254
Sample JCL for STL translation 254
Data compression 254

Summary report 254
Problems and possible solutions 255
CPI-C script generation support 256
Function overview. 256
Tracing considerations 256

VTAM buffer trace 257
OS/2 Communications Manager (CM/2) trace 257
IBM Communications Server trace 257
Tracing dependencies and restrictions 257

Automatic script generation considerations . . . 258
Network definitions 259

Sample model network 259
Changes to JCL and CLISTs 259

Sample JCL 259
Sample TSO CLIST 260

Changes to the WSim/ISPF Interface 261
ITPSGEN control commands 262

COMP and NOCOMP commands 262
FIELD and NOFIELD commands 263
HEXON and NOHEXON commands 265
SENDL and NOSENDL commands 266
UCD and NOUCD commands. 267

STL translation 267
Sample JCL for STL translation 267
CPICVARA STL include file 268

VTAM system definitions 269

Chapter 19. 3270 password masking 271
Interactive Data Capture (IDC) 271
ITPLU2RF 271
ITPLSGEN 271
WSim simulator ITPENTER 272
Loglist utility ITPLL 272
Compare utility ITPCOMP 272
ITPGNKYZ utility to generate encryption key/IV
USERMOD 272

vi WSim V1R1 Utilities Guide

Chapter 20. Work Station Trace
Reformatter Utility 275
Trace output format requirements 275

Example: CM/2 trace record 275
Executing ITPWSTRF under MVS 275

Chapter 21. Generating STL from
TCP/IP traces 277
Setting up ITPIPGEN. 277
Running ITPIPGEN 278

Using JCL to run ITPIPGEN 278
Using a CLIST to run ITPIPGEN 278
Running ITPLSGEN from the WSim/ISPF
Interface 278
Specifying execution parameters 278

Using control commands 279
Entering control commands 279
Specifying the client IP address 280
Specifying the server port 280
Defining the STL program name 280

Specifying input and output 280
Defining the network name 281
Verifying server responses 281
Starting ITPIPGEN 282
Ending ITPIPGEN 282

Part 3. Appendixes 283

Notices 285
Trademarks and service marks 286

Glossary 287

Bibliography. 295
WSim library 295
Related publications 295

Index 297

Contents vii

|
||
||
||
||
||
|
||
||
||
||
||
||
||

||
||
||
||
||

viii WSim V1R1 Utilities Guide

Figures

1. WSim/ISPF Interface main panel. 6
2. Structure of WSim/ISPF Interface panels . . . 7
3. Example of Preprocessor input with the PREP

statement 12
4. Preprocessor output storage 13
5. Example of Preprocessor output with no errors 14
6. Example of Preprocessor output using the

SUMMARY option 15
7. Example of Preprocessor output with errors 16
8. Cross-reference report 17
9. Example of a Verification Detail Report 28

10. Example of the Verification Summary Report 33
11. Command input to the Loglist Utility 39
12. Example of the Loglist Utility output using the

FMTSNA command 40
13. Example of the Loglist Utility output using the

NOFMT command 40
14. Example of the Loglist Utility output using the

SHORT operand on the NOFMT command . . 41
15. Example of the Loglist Utility output using the

DSPLY command 42
16. Example of the Loglist Utility output using the

ATTR operand on the DSPLY command . . . 42
17. Example of a DSPY record as formatted by the

Loglist Utility 64
18. The synchronizing process with panel E

specified as the SYNCPOINT 72
19. Control commands to specify Log Compare

Utility output 79
20. Example of an active command list 81
21. Example of a complete records list (MASTER

and TEST) 81
22. Example of a compare list. 82
23. Example of a differences report for character

and base attribute differences 82
24. Example of a differences report with a

upper/lowercase difference 84
25. Example of a differences report with a cursor

position difference 86
26. Example of a differences report with a data

difference 88
27. Example of a summary report 89

28. Example of input commands for the
Response Time Utility. 122

29. The Response Time Utility Terminal Report 123
30. The Response Time Utility Listing of

Transaction Records 124
31. The Response Time Utility Response Time

Frequency Distribution 125
32. The Response Time Utility Cumulative

Response Time Distribution 126
33. The Response Time Utility Time Graph of

Responses. 127
34. Initial ITPECHO panel 153
35. ITPECHO incoming data stream 153
36. Interactive Data Capture session flow 175
37. IDC main panel 182
38. IDC start session panel 183
39. IDC escape actions panel 185
40. IDC add STL statements panel 187
41. IDC change log data sets panel 188
42. IDC change escape key panel 190
43. IDC generate STL program panel 191
44. IDC generate message generation deck panel 195
45. Generating scripts with the Script Generator

Utility 232
46. Generating message decks from sorted trace

data. 238
47. Relationship between ITPSGEN data sets 241
48. Sample SEQOUT data set 250
49. Summary Report 251
50. Detail Report 252
51. Sample JCL for STL translation. 254
52. Network definition for use in generating

CPI-C scripts. 259
53. JCL modified to enable ITPSGEN to generate

CPI-C scripts. 260
54. A CLIST modified to enable ITPSGEN to

generate CPI-C scripts 261
55. Sample JCL to execute the WSim STL

Translator 268
56. CPICVARA STL include file 269
57. Example: CM/2 trace record 275

© Copyright IBM Corp. 1985, 2015 ix

||

x WSim V1R1 Utilities Guide

Tables

1. WSim Log record type cross reference. . . . 36
2. Record selection control commands 47

3. Log Compare Utility selection commands 69
4. Log Compare Utility process commands 69

© Copyright IBM Corp. 1985, 2015 xi

xii WSim V1R1 Utilities Guide

About this book

This book describes the Workload Simulator (WSim) general utility programs.

This book is intended to help customers use the WSim general utilities and
provide an overview of the utilities that assist in generating message generation
decks and STL procedures. The WSim utilities covered are the WSim/ISPF
Interface, the Preprocessor and ITPSYSIN, the Loglist Utility, the Log Compare
Utility, the Response Time Utility and ITPECHO. It contains information about
how to run the utilities, including the control commands to achieve the desired
results.

This book also helps customers use the WSim script generating utilities to produce
WSim message generation decks and STL procedures from captured data. The
utilities covered are the Interactive Data Capture Utility, the Log Script Generator
Utility, the SNA 3270 Reformatter Utility and the Script Generator Utility. It
contains information on how to run the utilities, including control commands to
achieve the desired results.

Who should read this book
This book is intended for operators who use the WSim general utilities, for
programmers who write routines for the WSim general utility programs and for
users who will be capturing data and using the captured data to produce message
generation decks or STL procedures. The book assumes that you are familiar with
WSim and with the statements and commands used in message generation decks
and STL procedures.

For more information about networks and message generation decks, see Creating
WSim Scripts and the WSim Script Guide and Reference.

How to use this book
The purpose of part 1 of this book is to introduce the WSim general utilities,
explain how to use the utilities, and describe the output produced by the utilities.

This part contains the following chapters:
v Chapter 1, “Introducing WSim utilities,” on page 3 provides an overview of the

WSim general utility programs.
v Chapter 2, “Running WSim with the WSim/ISPF Interface,” on page 5 provides

an overview of the WSim/ISPF Interface.
v Chapter 3, “Using the Preprocessor and ITPSYSIN to preprocess WSim scripts,”

on page 11 describes the Preprocessor. The Preprocessor checks the syntax of
your network definition statements and message generation decks and stores
them in the appropriate data sets. This part also describes how to use ITPSYSIN,
a subset of the Preprocessor. This program stores network definition statements
and message generation decks in the appropriate data sets without checking
syntax.

v Chapter 4, “Using the Loglist Utility to format the log data set,” on page 25 and
Chapter 5, “Specifying loglist control commands,” on page 45 describes the
Loglist Utility, which produces a formatted report of the activity recorded on the
log data set.

© Copyright IBM Corp. 1985, 2015 xiii

v Chapter 6, “Using the Log Compare Utility to compare log data sets,” on page
63 and Chapter 7, “Specifying Log Compare Utility control commands,” on page
91 describes the Log Compare Utility, which compares the display records in
two log data sets and reports the differences.

v Chapter 8, “Using the Response Time Utility to analyze response times,” on page
107 and Chapter 9, “Specifying Response Time Utility control commands,” on
page 129 describes the Response Time Utility, a program that produces a
response time analysis report based on the activity recorded in the WSim log
data set.

v Chapter 10, “Using ITPECHO to test WSim simulated resources,” on page 151
describes ITPECHO, a VTAM® application program supplied with WSim as a
sample routine to help you understand WSim and its installation and planning
processes.

v Chapter 11, “Simulated resource type codes,” on page 161 lists the resource
codes used in WSim.

v Chapter 12, “Understanding message logging,” on page 163 provides
background information related to message logging. This information includes:
– What message logging is
– How messages are time stamped
– How messages are written to the log data set, including messages for special

devices.
v Chapter 13, “Using the TCP/IP Trace Utility,” on page 167 provides an overview

of the TCP/IP Trace Utility. The TCP/IP Trace Utility capture TCP/IP data trace
records by using TCP/IP trace Network Management Interface(NMI).

v Chapter 14, “Using the TCP/IP Trace Formatting Utility,” on page 171 provides
an overview of TCP/IP Trace Formatting Utility. The TCP/IP Trace Formatting
Utility produces a formatted report of the TCP/IP trace records that are saved in
a data set.

The purpose of part 2 of this book is to help customers use the WSim script
generating utilities to produce WSim message generation decks and STL
procedures from captured data.

This part contains the following chapters:
v Chapter 15, “Generating scripts interactively with IDC,” on page 175 provides an

overview of the Interactive Data Capture Utility. The Interactive Data Capture
Utility captures 3270 SNA session data between a terminal and a host
application and generates a WSim message generation deck or an STL program
from the captured data.

v Chapter 16, “Generating scripts from IDC or WSim log data sets,” on page 213
provides an overview of the Log Script Generator Utility. The Log Script
Generator Utility generates a WSim message generation deck or an STL program
from an IDC or WSim log data set.

v Chapter 17, “Generating 3270 scripts from captured traces,” on page 221
provides an overview of the SNA 3270 Reformatter Utility. The SNA 3270
Reformatter Utility creates a WSim log data set from captured log data, which
can be used by the Log Script Generator Utility to generate a WSim message
generation deck or an STL program.

v Chapter 18, “Using the Script Generator Utility,” on page 231 provides an
overview of the Script Generator Utility. The Script Generator Utility helps you
create message generation decks by using captured data traffic and network
configuration data. You must follow five steps to use the Script Generator
Utility:

xiv WSim V1R1 Utilities Guide

|
|
|

|

|

1. Obtain a trace of system activity.
2. Reformat the captured data.
3. Sort the reformatted data.
4. Define the network for your simulation.
5. Generate the message generation decks.

A utility program (ITPVTBRF) is provided as part of the Script Generator Utility
to help perform the steps in this procedure.

v Chapter 19, “3270 password masking,” on page 271 provides an overview of the
Password Masking. Password Masking helps mask potential passwords entered
by users of the WSim data capture and script generation utilities and mask their
presence in generated WSim scripts, simulation data views, and output reports.

v Chapter 20, “Work Station Trace Reformatter Utility,” on page 275 provides an
overview of Work Station Trace Reformatter Utility (ITPWSTRF) reformats OS/2
Communications Manager and IBM Communications Server LU 6.2 traces into
TIR formatted records for processing by using the WSim Script Generator.

v Chapter 21, “Generating STL from TCP/IP traces,” on page 277 describes how to
generate STL programs from a TCP/IP trace by using the TCP/IP Trace STL
Generation Utility (ITPIPGEN) and how to use control commands.

Where to find more information
The following list shows the books in the WSim library. For more information
about related publications, see the “Bibliography” on page 295.

Planning, Installation, and Operation
WSim User's Guide SC31-8948
WSim Test Manager User's Guide and Reference SC31-8949
WSim Messages and Codes SC31-8951

Resource and Message Traffic Definition
Creating WSim Scripts SC31-8945
WSim Script Guide and Reference SC31-8946
WSim Utilities Guide SC31-8947

Customization
WSim User Exits SC31-8950

About this book xv

|

xvi WSim V1R1 Utilities Guide

Part 1. General utilities

© Copyright IBM Corp. 1985, 2015 1

2 WSim V1R1 Utilities Guide

Chapter 1. Introducing WSim utilities

This chapter introduces the programs that make up the WSim utilities.

What is Workload Simulator?
Workload Simulator (WSim) is a terminal simulation tool. You can use WSim to
determine system performance and response time, to perform functional testing,
and to automate regression testing. Used as a basic tool in a comprehensive test
plan, WSim increases the effectiveness of system testing by providing a structured
and systematic approach to all phases of system testing.

WSim Version 1 Release 1 runs on any IBM® host processor that supports:
v MVS/370 (MVS/SP Version 1 or later)
v MVS/XA (MVS/SP Version 2 or later)
v MVS/ESA (MVS/SP Version 3 or later)
v OS/390

In this book, MVS™ is any environment running MVS/370 or MVS/XA (unless
explicitly stated otherwise).

WSim general utilities programs
The WSim general utilities described in this book consist of the following:

WSim/ISPF Interface
The WSim/ISPF Interface provides a CUA-compliant operator interface to
many functions of WSim.

Preprocessor
The Preprocessor checks the syntax of your network definition statements
and message generation decks and stores them in the appropriate data
sets.

ITPSYSIN
ITPSYSIN contains a subset of the preprocessor functions. This program
stores the network definition statements and message generation decks in
the appropriate data sets without checking the syntax.

Loglist Utility
The Loglist Utility produces formatted reports of the activity recorded in
the WSim log data set. You can request a report for all the resources in the
WSim log data set or for only specific network resources.

Log Compare Utility
The Log Compare Utility compares the 3270 display records in two log
data sets and reports the differences. You can specify the records and the
fields that the Log Compare Utility compares, using user-defined
parameters.

Response Time Utility
The Response Time Utility produces a response time analysis report based
on the activity recorded in the WSim log data set.

© Copyright IBM Corp. 1985, 2015 3

ITPECHO
ITPECHO is a VTAM application that helps you understand WSim and its
installation and planning processes.

TCP/IP Trace Utility
The TCP/IP Trace Utility captures TCP/IP data trace records for the
messages that are exchanged between a client and a server.

TCP/IP Trace Formatting Utility
The TCP/IP Trace Formatting Utility formats TCP/IP trace records that are
saved to a data set.

Script generating utility programs
This section describes the utility programs that you can use to create message
generation decks: Interactive Data Capture, the Log Script Generator Utility and
the Script Generator Utility. Interactive Data Capture and the Log Script Generator
Utility can also generate STL procedures. The SNA 3270 Reformatter Utility is also
described.

Interactive Data Capture
The Interactive Data Capture Utility captures 3270 SNA session data between a
terminal and a host application and generates a WSim message generation deck or
an STL program from the captured data.

Log Script Generator Utility
The Log Script Generator Utility generates a WSim message generation deck or an
STL program from an IDC or WSim log data set.

SNA 3270 Reformatter Utility
The SNA 3270 Reformatter Utility creates a WSim log data set from captured log
data, which can be used by the Log Script Generator Utility to generate a WSim
message generation deck or an STL program.

Script Generator Utility
The Script Generator Utility helps you create message generation decks by using
captured data traffic and network configuration data. You must follow five steps to
use the Script Generator Utility:
1. Obtain a trace of system activity.
2. Reformat the captured data.
3. Sort the reformatted data.
4. Define the network for your simulation.
5. Generate the message generation decks.

A utility program (ITPVTBRF) is provided as part of the Script Generator Utility to
help perform the steps in this procedure.

TCP/IP Trace Script Generator Utility

The TCP/IP TraceScript Generator Utility reads TCP/IP trace records from a data
set and generates an STL program that replicates the transactions between a client
and server.

4 WSim V1R1 Utilities Guide

|
|
|

|
|
|

|

|
|
|

Chapter 2. Running WSim with the WSim/ISPF Interface

The WSim/ISPF Interface is a CUA-compliant operator interface that lets you start
the WSim utilities. To use the WSim/ISPF Interface, you need to run WSim under
MVS with TSO/E and ISPF. Refer to WSim User's Guide for information about
setting up your environment to run the WSim/ISPF Interface.

You can access the following WSim functions with the WSim/ISPF Interface:
1. STL Translator
2. Preprocessor and ITPSYSIN
3. Interactive Data Capture (IDC) Utility
4. Log Script Generator Utility
5. Script Generator Utility
6. SNA 3270 Reformatter Utility
7. WSim simulation runs
8. Response Time Utility
9. Log Compare Utility

10. Loglist Utility

You can get help for the WSim/ISPF Interface at any time by pressing F1. For more
information, see “Getting help from the WSim/ISPF Interface” on page 7.

Invoking the WSim/ISPF Interface
Invoke the WSim/ISPF Interface by entering the following command on the TSO
command line:
ITP0MAIN prefix (PROFILE DEBUG

prefix is the installation qualifier for the WSim/ISPF Interface defaults data set. If
you do not specify prefix, “WSIM$$$$” is used. (You might invoke the WSim/ISPF
Interface differently at your installation. See your system programmer for this
information or refer to WSim User's Guide for instructions on setting up the
WSim/ISPF Interface.)

Specify PROFILE to read the WSim/ISPF Interface defaults data set (created by the
ITP0INST exec) and use the values within that data set as defaults. If you do not
specify PROFILE, the defaults data set is only read the first time you invoke the
WSim/ISPF Interface for the current release.

You may make changes to the WSim/ISPF Interface source code. However, IBM is
under no obligation to support the WSim/ISPF Interface code you change. If you
need to debug a problem encountered in your modified code, specify DEBUG to
help you find the problem.

You can specify DEBUG and PROFILE in either order.

The first time you invoke the WSim/ISPF Interface, you see a logo panel. Press
Enter to display the WSim/ISPF Interface main panel, as shown in Figure 1 on
page 6. You can select the following options from this panel:

© Copyright IBM Corp. 1985, 2015 5

STL This option lets you create and translate network definitions and STL
programs, using the STL Translator. For more information on this, refer
to WSim Script Guide and Reference.

PREP This option lets you create and translate network definitions and WSim
message generation decks, using the Preprocessor or ITPSYSIN. For
more information on this, see Chapter 3, “Using the Preprocessor and
ITPSYSIN to preprocess WSim scripts,” on page 11.

IDC This option lets you generate message generation decks or STL
programs interactively, using the Interactive Data Capture Utility. For
more information on this, refer to Part 2, “Script generating utilities,” on
page 173.

TCPPROC This option lets you create and format TCP/IP traces. For more
information refer to Part 1, “General utilities,” on page 1.

GENERATE This option lets you generate message generation decks or STL
programs, using one of the WSim script generation utilities. For more
information on this, refer to Part 2, “Script generating utilities,” on page
173.

RUNWSIM This option lets you start a WSim simulation run. For more information
on this, refer to WSim User's Guide.

LOGLIST This option lets you format a WSim log data set, using the Loglist
Utility. For more information on this, see Chapter 4, “Using the Loglist
Utility to format the log data set,” on page 25.

RESPONSE This option lets you calculate response times, using the Response Time
Utility. For more information on this, see Chapter 8, “Using the
Response Time Utility to analyze response times,” on page 107.

COMPARE This option lets you compare log data sets, using the Log Compare
Utility. For more information on this, see Chapter 6, “Using the Log
Compare Utility to compare log data sets,” on page 63.

SCREEN This option lets you change such screen characteristics as color, function
key display, panel ID display, and beep status.

SETUP This option lets you set up system default values, such as data set
names, installation qualifier and printer information.

ITP0PRIP Workload Simulator (WSim)

Select one of the following. Then press Enter.

Command Action
__ 1. STL Create and Process Networks and STL Programs

2. PREP Create and Preprocess Networks and Message Decks
3. IDC Interactively Capture and Build Message Decks and STL Programs
4. TCPPROC TCP/IP Trace Processing
5. GENERATE Generate Message Decks, STL Programs, and WSim Logs

6. RUNWSIM Run WSim (Prepare to Run a Simulation)

7. LOGLIST Analyze Logged Data
8. RESPONSE Analyze Response Times
9. COMPARE Compare Logged Display Data

10. SCREEN Change Screen Characteristics
11. SETUP Change System Defaults

<<------------------------ (message area) ------------------------------------>>
Command ===> ___
F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

Figure 1. WSim/ISPF Interface main panel

6 WSim V1R1 Utilities Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|

Getting help from the WSim/ISPF Interface
If you are currently on an application panel (for example, the STL panel) and you
press the F1 function key, you see a help panel. The type of help you get depends
on the location of the cursor:

Cursor Location Type of Help

Input field Help on that input field.

Message line Help on the message, if one is displayed. If not, help on the
application panel.

Command line Help on the available commands.

Anywhere else Help on the application panel.

Once you invoke Help, you may choose from several different types of help. If you
press F1 while inside Help, you see a Help for Help panel, which gives you further
information on how to access the various help items.

Navigating the panels
Figure 2 shows the panel structure for the WSim/ISPF Interface application panels.

Note: There is no hierarchical structure for the Help panels.

┌──────────┐
┌────┤ STL │
│ └──────────┘
│ ┌──────────┐
├────┤ PREP │
│ └──────────┘
│ ┌──────────┐
├────┤ IDC ├───────
 IDC Panels
│ └──────────┘
│ ┌──────────┐
├────┤ TCPPROC │
│ └──────────┘
│ ┌──────────┐ ┌──────────┐
├────┤ GENERATE ├────┬────┤ LSGEN │
│ └──────────┘ │ └──────────┘
│ │
│ │

┌──────────┐ │ ┌──────────┐ │ ┌──────────┐ ┌──────────┐
│ MAIN ├────├────┤ RUNWSIM │ ├────┤ SGEN ├────┬────┤ NPMVTAM │
└──────────┘ │ └──────────┘ │ └──────────┘ │ └──────────┘

│ ┌──────────┐ │ │ ┌──────────┐
├────┤ LOGLIST │ │ ├────┤ SORTTRCE │
│ └──────────┘ │ │ └──────────┘
│ ┌──────────┐ │ ┌──────────┐ │ ┌──────────┐
├────┤ RESPONSE │ ├────┤ LU2RF │ └────┤ GENDECKS │
│ └──────────┘ │ └──────────┘ └──────────┘
│ ┌──────────┐ │ ┌──────────┐
├────┤ COMPARE │ └────┤ TCPSGEN │
│ └──────────┘ └──────────┘
│ ┌──────────┐
├────┤ SCREEN │
│ └──────────┘
│ ┌──────────┐
└────┤ SETUP │

└──────────┘

Figure 2. Structure of WSim/ISPF Interface panels

Chapter 2. Running WSim with the WSim/ISPF Interface 7

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

You may navigate among the panels by using the function keys (F3 or F12), by
entering a selection on the MAIN, GENERATE, or SGEN panel, or by entering a
command on the command line and pressing Enter.

There are more panels that are not shown in Figure 2 on page 7:
v Models
v Specify Additional Networks and STL Programs (STL)
v Specify Additional Message Decks (RUNWSIM)
v Specify Additional Networks (RUNWSIM)
v Specify Additional Network and Message Decks (PREP)
v Control Analysis of Logged Data
v Specify Additional Loglist Groups
v Submit a Batch Job.

These panels are all full-screen windows. Selecting F4 (Edit Input) with the Model
New Input field set to Y while on the STL or PREP panel with a valid data set
name and new member specified on the Input Data Set field causes the Models
window to appear. On this window, you can select a model to use to edit your
input. If you position your cursor on an Input Data Sets field and press F10 on the
STL, PREP, or RUNWSIM panels, a window appears allowing foradditional Input
Data Sets to be specified. On this window, you can enter additional data set names
for that field. Input fields with additional input data sets defined are marked with
a “+” to the left of the input field description.

If you enter a P in the Control input area field and a Y in the Display control panel
fields of the LOGLIST panel, you see the Control Analysis of Logged Data
window, allowing you to specify options to use when you run the Loglist Utility. If
you press F10 on this window, you see the Specify Additional Loglist Groups
window, allowing you to specify additional devices, LUs, or TPs to be formatted
for the Loglist Utility. For all utilities, if you select to run in batch mode and press
Enter, you see a window, allowing you to change information before you submit
the batch job.

Entering data on panel fields
Some input fields are always optional, some are optional depending on input to
another field, and some are always required. You can distinguish required fields
from optional fields by viewing help information for that field. Default values are
provided for fields requiring input.

Entering and processing commands on the command line
Whenever you type a command on the command line and press Enter, the
command is processed and everything else on the panel is ignored. If you press a
function key instead of Enter after you type a command on the command line, that
command is ignored and the action specified by the function key is performed.

Entering data set information
To fully qualify data set entry fields, you must enclose the data set name in single
quotes. If the data set name is unqualified (that is, not enclosed in quotes), the TSO
user prefix is attached to the name unless you specify NOPREFIX in your user
profile. The maximum length for data set names is 44 characters, including the
TSO user prefix but not including member names.

8 WSim V1R1 Utilities Guide

Using function keys
You can use the following function keys in the WSim/ISPF Interface:

F1 (Help) Invokes help information on the WSim/ISPF Interface. See “Getting
help from the WSim/ISPF Interface” on page 7 for more information
about getting help.

F2 (Split) Splits the screen at the cursor position, except for help panels and
full-screen windows.

F3 (End) Ends the WSim/ISPF Interface from any application panel that it is
displayed on. Pressing F3 while you are on a help panel ends the help
session and returns you to the panel you were on when you invoked
help.

F4 (Edit Input) Edits the input data set indicated by the cursor position, using the
ISPF/PDF editor with your current edit profile. If you edit a
partitioned data set without specifying a member name, you see a
member selection list displayed on your screen.

F5 (Restore) Restores previously saved field values on a panel.

F6 (Browse output) Browses printer output or models, using the ISPF/PDF browser. If
you browse a partitioned data set without specifying a member name,
you see a member selection list displayed on your screen.

F7 (Backward) Scrolls a panel backward. An indicator, “More: –”, tells you if you can
scroll backward on a panel.

F8 (Forward) Scrolls a panel forward. An indicator, “More: +”, tells you if you can
scroll forward on a panel.

F9 (Swap) Swaps two previously split panels.

F10 (Edit Control
File)

Edits a control file, using the ISPF/PDF editor with your current edit
profile. If you edit a partitioned data set without specifying a member
name, you see a member selection list displayed on your screen.

F10 (Additional
Input)

Allows input of additional data sets for the field indicated by the
cursor position (see “Navigating the panels” on page 7 for more
information).

F11 (Save) Saves all field values you enter. If you leave a panel without saving,
any field values you change are lost.

F12 (Cancel) Ends the current panel and returns you to the panel you were
previously on.

Chapter 2. Running WSim with the WSim/ISPF Interface 9

10 WSim V1R1 Utilities Guide

Chapter 3. Using the Preprocessor and ITPSYSIN to
preprocess WSim scripts

Before you can run your WSim simulation, you must place the network definitions
and message generation decks into data sets. You can use either the Preprocessor
or the ITPSYSIN utility program to store your network definitions and message
generation decks. However, use of the Preprocessor or ITPSYSIN is not required.
You can also use an editor to store the network definition statements and message
generation decks in data sets.

The difference between the Preprocessor and ITPSYSIN is that the Preprocessor
checks the syntax of the statements when it stores them and ITPSYSIN only stores
the statements. Because you can also check the syntax when you initialize the
network by running WSim, you can use the Preprocessor and ITPSYSIN most
efficiently in the following situations:
v Use the Preprocessor:

– If you have just created the message generation decks
– If you have made substantial changes to the message generation decks
– If you are storing the WSim script without initializing and running the

simulation.
v Use ITPSYSIN:

– If you have made only minor changes, for example, to one statement
– If you are planning on immediately initializing the network and running

WSim.

Note: Using the Preprocessor before initializing the network does not shorten
the amount of time needed to initialize a network during WSim execution.

Whether you check your errors by using the Preprocessor or by using ITPSYSIN
and initializing the system, you can obtain system output and use it to debug your
script.

Using the Preprocessor
The following sections discuss the input required for the Preprocessor and the
output that is provided. They also describe how to run the Preprocessor.

Understanding Preprocessor input
The input to the Preprocessor consists of network definition statements, which can
be a sequential data set or a member of a partitioned data set, and message
generation decks. When preprocessing a network, place the network definition in
the input data stream first, followed by the message generation decks. If a member
containing a specific message generation deck already exists in the data set
specified by the MSGDD DD statement and does not need to be modified, you do
not need to include that message deck in the data stream for the Preprocessor. If
the network definition already exists in the INITDD DD data set and does not
need to be modified, you can use the PREP statement in the input data stream
instead of repeating the network definition. Refer to Figure 3 on page 12 for an
example of using the PREP statement.

© Copyright IBM Corp. 1985, 2015 11

You can include multiple networks in the input stream to be preprocessed during a
single Preprocessor run. Include the message generation decks required by these
multiple networks in the input stream unless the message generation decks exist in
the MSGDD data set. For more information about the syntax of the statements
used as input to the Preprocessor, refer to WSim Script Guide and Reference.

The PREP statement, which is valid only for the Preprocessor, has the following
format:
netname PREP

where netname is the name of the member from the INITDD data set that is to be
preprocessed. If a message generation deck is required by a NTWRK or a PREP
statement but is not in the MSGDD DD, you must include it before the next
NTWRK or PREP statement. You can code more than one PREP statement. You can
also mix the PREP statements with the WSim network definition statements, as
shown in Figure 3.

Understanding Preprocessor output
If the Preprocessor detects no errors in the network definition statements, the
network is stored in the INITDD data set defined in the statements used to run the
Preprocessor. The network definition is stored in the output data set defined by the
INITDD DD statement under the name that appears on the NTWRK statement.
Message generation decks and message user tables are stored in the output data
set defined by the MSGDD DD statement under the name that appears on the
MSGTXT or MSGUTBL statement. Only the network definition statements and
message generation decks obtained from the SYSIN input data stream are written
to the respective data sets. Figure 4 on page 13 shows a diagram of the input to
and output from the Preprocessor.

Note: The INITDD and MSGDD DD statements can define the same data set. The
data sets are stored only when they are preprocessed without an error.

TEST1 PREP BEGIN NETWORK 1 DEFINITION
TEST2 PREP BEGIN NETWORK 2 DEFINITION
DECK1 MSGTXT

.

.

.
ENDTXT

TEST3 NTWRK BEGIN NETWORK 3 DEFINITION
.
.
.

VTAMAPPL
LU

.

.

.
DECK2 MSGTXT

.

.

.
ENDTXT

TEST4 PREP BEGIN NETWORK 4 DEFINITION

Figure 3. Example of Preprocessor input with the PREP statement

12 WSim V1R1 Utilities Guide

A preprocessed network run with the PREP statement is not rewritten to the
INITDD data set after the initialization process is complete. Message generation
decks are processed normally and written to the MSGDD data set only if they were
included in the SYSIN data stream.

In addition to data set members, the Preprocessor also provides the following
printed output:
v A listing of the input statements (optional)

The Preprocessor output includes statement numbers of the executable
statements of each message generation deck (for all lines except MSGTXT
statements, LABEL statements, comments, and blank lines). Each statement
number is a 5-digit number printed to the left of the corresponding statement.
The message generation decks are each numbered separately beginning with
00001. When a message trace record in the Loglist Utility output refers to a
particular statement, you can use this listing to determine what that statement
was. Refer to Using the loglist utility to format the log data set for information
about using the Loglist Utility.

v A cross-reference report
Following the statement listing is a cross-reference report, showing each
statement, its type, where it is defined, and where it is referenced. See Using the
cross-reference report for information about this report.

v A listing of the input errors
Only the first error detected on each statement line is flagged.

v A network summary report (optional)
The network summary report summarizes the network definition options and
defaults.

v An estimate of storage requirements
v A statement indicating whether the data in the network definition was saved in

the INITDD data set.

The following three figures show different types of Preprocessor output for WSim
scripts. The first two show output from WSim scripts that had no syntax errors.
Figure 5 on page 14 illustrates output without a network summary report and
Figure 6 on page 15 illustrates output with a network summary report. All three
Preprocessor output listings show a cross-reference report at the end of the listing.
Note that the size of the network printed at the end of the Preprocessor run

┌───────────────┐
│ │
│ SYSIN │
│ Data Set │
│ ├──┐ ┌───────────┐
└───────────────┘ │ ┌──────────────┐ │ INITDD │
┌───────────────┐ └──
│ ├───────
│ Data Set │
│ Optional │ │ │ │ │
│ Network │ │ │ └───────────┘
│ Data Set ├─────
│ Preprocessor │
│ │ │ │
└───────────────┘ │ │ ┌───────────┐
┌───────────────┐ ┌──
│ ├───────
│ │
│ Optional ├──┘ └──────────────┘ │ MSGDD │
│ Msg Gen Deck │ │ Data Set │
│ and MSGUTBL │ │ │
│ Data Sets │ └───────────┘
└───────────────┘

Figure 4. Preprocessor output storage

Chapter 3. Using the Preprocessor and ITPSYSIN to preprocess WSim scripts 13

specifies the number of bytes required for the network control blocks; it does not
indicate the region size necessary for network execution. The number of text blocks
required for a MSGDISK statement also appears in the output.

Figure 7 on page 16 shows Preprocessor output for a network with errors and no
network summary report. Note that an error message appears above the incorrect
statement, and an asterisk (*) appears below the invalid operand on the scale line.

WSim PREPROCESSOR OUTPUT TIME 9.09.01, APRIL 12, 2002 PAGE 1

LINE STMT ---------1---------2---------3---------4---------5---------6---------7-
1 VAPPL NTWRK ITIME=1, * Network interval report every 1 *
2 * * minute *
3 SCAN=(1,1,0), * Scan/display/recovery times *
4 UTI=100, * User time interval = 1 second *
5 *--*
6 * VTAMAPPL operands coded on the network statement. These values will *
7 * be the default for every VTAMAPPL in the network. *
8 *--*
9 BUFSIZE=3000, * Buffer size is 3000 bytes *
10 MLOG=YES, * Message logging function will be*
11 * * used *
12 *--*
13 * LU operands coded on the network statement. These values will be *
14 * the default for every Logical Unit in the network. *
15 *--*
16 DELAY=F1, * Use fixed message delay interval*
17 DLOGMOD=D4A32782, * VTAM logon mode *
18 INIT=SEC, * Secondary LU initiates the *
19 * * session *
20 LOGDSPLY=BOTH, * Log the display buffers before *
21 * * and after message generation *
22 LUTYPE=LU2, * Logical unit type = LU2 *
23 MSGTRACE=YES, * Write message generation trace *
24 * * records to the log *
25 PATH=(0), * Specifies which PATH statement *
26 * * the LU will use *
27 THKTIME=UNLOCK * Terminal unlock starts msg delay*
28 * * timer *
29 *--*
30 0 PATH LUDECK * Run the LUDECK msgtxt on this *
31 * * path *
32 *--*
33 * Define the network resources. *
34 * *
35 * ==> CHANGE the VTAMAPPL names APPL1 and APPL2 as needed to match *
36 * names in your environment. These names must be defined to VTAM. *
37 *--*
38 APPL1 VTAMAPPL
39 LU11 LU
40 APPL2 VTAMAPPL
41 LU21 LU
42 *
43 LUDECK MSGTXT
44 **
45 * The Message Generation deck. *
46 * Issue an INITSELF to log on to ITPECHO. *
47 * Wait until the logon is complete. *
48 * After the logon completes, issue a message to the console. *
49 **
50 1 CMND COMMAND=INIT,RESOURCE=ITPECHO
51 2 0 IF LOC=RU+0,TEXT=(WELCOME),SCAN=YES,THEN=CONT,ELSE=WAIT
52 3 WAIT
53 4 WTO ($LUID$ UP AND RUNNING)
54 **
55 * Send a message to ITPECHO. *
56 * Repeat the loop forever until the WSim operator stops the network. *
57 **
58 LOOP LABEL
59 5 TEXT (MSG $DSEQ,5$ FROM $LUID$)
60 6 BRANCH LABEL=LOOP
61 7 ENDTXT

CROSS-REFERENCE REPORT TIME 9.09.01, APRIL 12, 2002 PAGE 2
NAME (DECK) TYPE DEFINED REFERENCED ON LINE NUMBER
------------------- ----------- ------- --
DSEQ COUNTER 59
LOOP (LUDECK) LABEL 58 60
LUDECK DECK NAME 43 30
NTWRKUTI UTI NAME 4
RU DATA STREAM 51
0 IF# 51
ITP657I 25,144 BYTES ARE REQUIRED FOR THIS NETWORK
ITP659I 1 BLOCKS OF TEXT DATA ARE REQUIRED FOR THIS NETWORK
ITP652I INITDD VAPPL REPLACED IN DATA SET
ITP652I MSGDD LUDECK REPLACED IN DATA SET

Figure 5. Example of Preprocessor output with no errors

14 WSim V1R1 Utilities Guide

WSim PREPROCESSOR OUTPUT TIME 9.08.28, APRIL 12, 2002 PAGE 1

LINE STMT ---------1---------2---------3---------4---------5---------6---------7-
1 VAPPL NTWRK ITIME=1, * Network interval report every 1 *
2 * * minute *
3 SCAN=(1,1,0), * Scan/display/recovery times *
4 UTI=100, * User time interval = 1 second *
5 *--*
6 * VTAMAPPL operands coded on the network statement. These values will *
7 * be the default for every VTAMAPPL in the network. *
8 *--*
9 BUFSIZE=3000, * Buffer size is 3000 bytes *

10 MLOG=YES, * Message logging function will be*
11 * * used *
12 *--*
13 * LU operands coded on the network statement. These values will be *
14 * the default for every Logical Unit in the network. *
15 *--*
16 DELAY=F1, * Use fixed message delay interval*
17 DLOGMOD=D4A32782, * VTAM logon mode *
18 INIT=SEC, * Secondary LU initiates the *
19 * * session *
20 LOGDSPLY=BOTH, * Log the display buffers before *
21 * * and after message generation *
22 LUTYPE=LU2, * Logical unit type = LU2 *
23 MSGTRACE=YES, * Write message generation trace *
24 * * records to the log *
25 PATH=(0), * Specifies which PATH statement *
26 * * the LU will use *
27 THKTIME=UNLOCK * Terminal unlock starts msg delay*
28 * * timer *
29 *--*
30 0 PATH LUDECK * Run the LUDECK msgtxt on this *
31 * * path *
32 *--*
33 * Define the network resources. *
34 * *
35 * ==> CHANGE the VTAMAPPL names APPL1 and APPL2 as needed to match *
36 * names in your environment. These names must be defined to VTAM. *
37 *--*
38 APPL1 VTAMAPPL
39 LU11 LU
40 APPL2 VTAMAPPL
41 LU21 LU
42 *
43 LUDECK MSGTXT
44 **
45 * The Message Generation deck. *
46 * Issue an INITSELF to log on to ITPECHO. *
47 * Wait until the logon is complete. *
48 * After the logon completes, issue a message to the console. *
49 **
50 1 CMND COMMAND=INIT,RESOURCE=ITPECHO
51 2 0 IF LOC=RU+0,TEXT=(WELCOME),SCAN=YES,THEN=CONT,ELSE=WAIT
52 3 WAIT
53 4 WTO ($LUID$ UP AND RUNNING)
54 **
55 * Send a message to ITPECHO. *
56 * Repeat the loop forever until the WSim operator stops the network. *
57 **
58 LOOP LABEL
59 5 TEXT (MSG $DSEQ,5$ FROM $LUID$)
60 6 BRANCH LABEL=LOOP
61 7 ENDTXT

CROSS-REFERENCE REPORT TIME 9.08.28, APRIL 12, 2002 PAGE 2
NAME (DECK) TYPE DEFINED REFERENCED ON LINE NUMBER
------------------- ----------- ------- --
DSEQ COUNTER 59
LOOP (LUDECK) LABEL 58 60
LUDECK DECK NAME 43 30
NTWRKUTI UTI NAME 4
RU DATA STREAM 51
0 IF# 51
WSim PREPROCESSOR OUTPUT TIME 9.08.28, APRIL 12, 2002 PAGE 3

NETWORK SUMMARY
VAPPL NTWRK HEADING=’ WSim INTERVAL REPORT ’ UTI=100 REPORT=FULL ITIME=1 STIME=0

SCAN=(1,1,0) EMTRATE NOT ACTIVE NAMEHASH=10
NETUSER=0 CNTRS=7 OPTIONS NOT CODED
CNTRSEED=7935629 DELYSEED=9104901 PATHSEED=1532001 TEXTSEED=3841995 UTBLSEED=5736539
INEXIT NOT CODED OUTEXIT NOT CODED NCTLEXIT NOT CODED UCMDEXIT NOT CODED UXOCEXIT NOT CODED

INFOEXIT NOT CODED
INXEXPND=NO
INHBTMSG NOT CODED

APPL1 VTAMAPPL APPLID=APPL1 BUFSIZE=3000 MLEN=ALL MLOG=YES PASSWD=APPL1
LU11-1 LU LUTYPE=LU2 THKTIME=UNLOCK DELAY=F(1) QUIESCE=NO

IUTI=NTWRKUTI THROTTLE=1
FRSTTXT NOT CODED ATRDECK NOT CODED SAVEAREA=(0,0) USERAREA=0
ATRABORT=DECK MAXCALL=5 SEQ=0 DISPLAY=(24,80,24,80)
LOGDSPLY=BOTH PROTMSG=YES
EXTFUN=YES COLOR=GREEN HIGHLITE=NO FLDVALID=NO MAXNOPTN=0 MAXPTNSZ=0
PS=NONE ALTCSET=NONE CCSIZE=(9,16) UOM=INCH UASIZE=(960,751)
DBCS=NO FLDOUTLN=NO BASECSID=(697,37)
MAXSESS=(0,1) INIT=SEC RESOURCE NOT CODED RTR=NO ENCR=NONE CHAINING N/A
CRDATALN=20 MSGTRACE=YES STLTRACE=NO PATH=(0) RSTATS=NO DLOGMOD=D4A32782

APPL2 VTAMAPPL APPLID=APPL2 BUFSIZE=3000 MLEN=ALL MLOG=YES PASSWD=APPL2
LU21-1 LU LUTYPE=LU2 THKTIME=UNLOCK DELAY=F(1) QUIESCE=NO

IUTI=NTWRKUTI THROTTLE=1
FRSTTXT NOT CODED ATRDECK NOT CODED SAVEAREA=(0,0) USERAREA=0
ATRABORT=DECK MAXCALL=5 SEQ=0 DISPLAY=(24,80,24,80)
LOGDSPLY=BOTH PROTMSG=YES
EXTFUN=YES COLOR=GREEN HIGHLITE=NO FLDVALID=NO MAXNOPTN=0 MAXPTNSZ=0
PS=NONE ALTCSET=NONE CCSIZE=(9,16) UOM=INCH UASIZE=(960,751)
DBCS=NO FLDOUTLN=NO BASECSID=(697,37)
MAXSESS=(0,1) INIT=SEC RESOURCE NOT CODED RTR=NO ENCR=NONE CHAINING N/A
CRDATALN=20 MSGTRACE=YES STLTRACE=NO PATH=(0) RSTATS=NO DLOGMOD=D4A32782

ITP657I 25,144 BYTES ARE REQUIRED FOR THIS NETWORK
ITP659I 1 BLOCKS OF TEXT DATA ARE REQUIRED FOR THIS NETWORK
ITP652I INITDD VAPPL REPLACED IN DATA SET
ITP652I MSGDD LUDECK REPLACED IN DATA SET

Figure 6. Example of Preprocessor output using the SUMMARY option

Chapter 3. Using the Preprocessor and ITPSYSIN to preprocess WSim scripts 15

Using the cross-reference report
The cross-reference report, printed at the end of the Preprocessor listing,
alphabetically lists message generation deck resources used in the script, their

WSim PREPROCESSOR OUTPUT TIME 9.09.43, APRIL 12, 2002 PAGE 1

LINE STMT ---------1---------2---------3---------4---------5---------6---------7-
1 VAPPL NTWRK ITIME=1, * Network interval report every 1 *
2 * * minute *
3 SCAN=(1,1,0), * Scan/display/recovery times *
4 UTI=100, * User time interval = 1 second *
5 *--*
6 * VTAMAPPL operands coded on the network statement. These values will *
7 * be the default for every VTAMAPPL in the network. *
8 *--*
9 BUFSIZE=3000, * Buffer size is 3000 bytes *
10 MLOG=YES, * Message logging function will be*
11 * * used *
12 *--*
13 * LU operands coded on the network statement. These values will be *
14 * the default for every Logical Unit in the network. *
15 *--*
16 DELAY=F1, * Use fixed message delay interval*
17 DLOGMOD=D4A32782, * VTAM logon mode *
18 INIT=SEC, * Secondary LU initiates the *
19 * * session *
20 LOGDSPLY=BOTH, * Log the display buffers before *
21 * * and after message generation *
22 LUTYPE=LU2, * Logical unit type = LU2 *
23 MSGTRACE=YES, * Write message generation trace *
24 * * records to the log *
25 PATH=(0), * Specifies which PATH statement *
26 * * the LU will use *

INITIALIZATION ERROR
VAPPL NEAR COLUMN 27 ITP1211I OPERAND VALUE IS INVALID

27 THKTIME=UNLCK * Terminal unlock starts msg delay*
----+----1----+----2----+-*--3----+----4----+----5----+----6----+----7----+----8

28 * * timer *
29 *--*
30 0 PATH LUDECK * Run the LUDECK msgtxt on this *
31 * * path *
32 *--*
33 * Define the network resources. *
34 * *
35 * ==> CHANGE the VTAMAPPL names APPL1 and APPL2 as needed to match *
36 * names in your environment. These names must be defined to VTAM. *
37 *--*
38 APPL1 VTAMAPPL
39 LU11 LU
40 APPL2 VTAMAPPL
41 LU21 LU
42 *
43 LUDECK MSGTXT
44 **
45 * The Message Generation deck. *
46 * Issue an INITSELF to log on to ITPECHO. *
47 * Wait until the logon is complete. *
48 * After the logon completes, issue a message to the console. *
49 **
50 1 CMND COMMAND=INIT,RESOURCE=ITPECHO
51 2 0 IF LOC=RU+0,TEXT=(WELCOME),SCAN=YES,THEN=CONT,ELSE=WAIT
52 3 WAIT
53 4 WTO ($LUID$ UP AND RUNNING)
54 **
55 * Send a message to ITPECHO. *
56 * Repeat the loop forever until the WSim operator stops the network. *
57 **

INITIALIZATION ERROR
VAPPL LUDECK NEAR COLUMN 02 ITP1206I INVALID NAME FIELD FOR THIS STATEMENT

58 5 LOOPUNTILLABEL
-*--+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

59 6 TEXT (MSG $DSEQ,5$ FROM $LUID$)
60 7 BRANCH LABEL=LOOP
61 8 ENDTXT

INITIALIZATION ERROR
VAPPL NEAR COLUMN 02 ITP1293I LABEL PRINTED NOT FOUND IN MESSAGE DECK LUDECK

LOOP
-*--+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

CROSS-REFERENCE REPORT TIME 9.09.43, APRIL 12, 2002 PAGE 2
NAME (DECK) TYPE DEFINED REFERENCED ON LINE NUMBER
------------------- ----------- ------- --
DSEQ COUNTER 59
LOOP (LUDECK) LABEL *ERROR* 60
LUDECK DECK NAME 43 30
NTWRKUTI UTI NAME 4
RU DATA STREAM 51
0 IF# 51

Figure 7. Example of Preprocessor output with errors

16 WSim V1R1 Utilities Guide

types (such as buffer or user area, for example), where they are defined, and where
they are used. You can use this report to help debug your script.

Figure 8 shows an example of this report.

Reading the cross-reference report
The cross-reference report contains four columns of information:
v NAME
v TYPE
v DEFINED
v REFERENCED ON LINE NUMBER.

The NAME column lists the names of all message deck resources used. If the
resource is a label, the name of the message deck where it is defined is shown in
parentheses.

The TYPE column lists the types of resources used. Valid values for the TYPE
column are:

BUFFER Device buffer (B).
Note: The default for the LOC operand on the
DATASAVE statement is B (buffer). The report references
BUFFER when this default is taken. Also, the report
references LOC=* on the DATASAVE statement as
BUFFER.

COUNTER Sequence or index counter.

CURSOR Cursor position (C).

DATA STREAM Data stream entities (TH, RH, RU, and D).

DECK NAME Message generation deck name.

EVENT TAG Event tag name.
Note: The default for the EVENTTAG operand when
TIME is specified on the EVENT statement is the event
name. The report references the event name as an
EVENT TAG when this default is taken.

IF# Message generation deck IF statement number.
Note: When DEACT IFS=ALL is coded, an entry of
ALL appears in the NAME column for this item,
indicating all IFs are deactivated.

LABEL Statement label. The message deck containing the label
definition is also shown, in parentheses, in the name
column.

NAME (DECK) TYPE DEFINED REFERENCED ON LINE NUMBER
------------------- ----------- ------- ----------------------------

EVENT1 ON EVENT 101, 130, 400, 421, 534,
900, 1001, 1200, 1230

EVENT2 WAIT EVENT 102, 150, 172

LOGOFFDK DECK NAME 40 10, 100

XITLABEL (LOGOFFDK) LABEL 45 110, 217

Figure 8. Cross-reference report

Chapter 3. Using the Preprocessor and ITPSYSIN to preprocess WSim scripts 17

ON EVENT ON/SIGNAL event name.
Note: When DEACT ONEVENTS=ALL is coded, an
entry of *ALL* appears in the NAME column for this
item, indicating all ON events are deactivated.

SAVE AREA Save area number.
Note: The default for the AREA operand on the
DATASAVE statement is save area 1. The report
references SAVE AREA 1 when this default is taken.

SWITCH Network, terminal, or device switch.

USER AREA User area number.

UTBL UTBL or MSGUTBL statement.

UTI NAME UTI statement name.

WAIT EVENT WAIT/POST event name.

The DEFINED column is used only for items that must be uniquely defined. These
are deck name, statement label, user table, and UTI name. If an item that is
supposed to be defined is not, the report displays *ERROR* in the column. If one
of these items is defined more than once, only the first location's line number
appears in the report.

The REFERENCED ON LINE NUMBER column lists the line numbers containing
statements referencing that resource.

Note: The cross-reference report may not be correct if Preprocessor errors are
found.

Running the Preprocessor
To run the Preprocessor, use the WSim load module ITPENTER with the execution
parameter PREP specified. The following sections describe the execution
parameters used to run the Preprocessor and give a sample JCL and TSO CLIST to
run the preprocessor. You can also run the Preprocessor from the WSim/ISPF
Interface.

Note: During the Preprocessor run, most of the control blocks necessary to execute
the network are built in virtual storage just as if the network were to be executed.
Therefore, when preprocessing large networks, the region size specified for the job
must be large enough for the WSim code, the network control blocks, and the
message generation decks. For more information about determining the region size,
refer to the virtual storage estimates section in WSim User's Guide.

Using the WSim/ISPF Interface
You can run the Preprocessor from the WSim/ISPF Interface. To do this, follow
these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 2 from the WSim/ISPF Interface main panel and press Enter. The
Preprocess Networks and Message Decks panel is displayed.

Note: You can also type “PREP” on the command line and press Enter to
display this panel.

3. Fill in the appropriate information on this panel and press Enter to preprocess
your script.

18 WSim V1R1 Utilities Guide

For more information on the WSim/ISPF Interface, see Chapter 2, “Running WSim
with the WSim/ISPF Interface,” on page 5.

Using Preprocessor execution parameters
You can enter the following execution parameters in the PARMDD data set on the
EXEC statement (MVS) or on the CALL statement for TSO CLISTs when you run
the Preprocessor. The PARMDD data set parameters are processed first.

ADD
Specifies that all members of a network preprocessed with no errors are to be
added to the output data sets (INITDD and MSGDD) only if the data sets do
not already contain members with the same names. If a member already exists
with the same name, it will not be replaced. If there are any errors in the
network, no attempt is made to add the data to the output data set. ADD is
the default.

Refer to execution parameter REPL for information about replacing members.

NOLIST
Specifies that a network listing is not to be printed in the SYSPRINT data set.
Any errors detected will still be printed.

NOXREF
Specifies that a cross-reference report is not to be printed.

PREP
Specifies that WSim is to be executed for the purpose of preprocessing
networks. PREP is required in order to invoke the Preprocessor.

PRTLNCNT=nnn
Specifies the maximum number of lines to be printed on a page of output
before ejecting to a new page. Enter an integer from 35 to 255 for nnn. The
default value for nnn is 60.

REPL
Specifies that all members of a network preprocessed with no errors are to be
added to the output data sets, replacing any members that already exist by the
same names. If there are any errors in the network, no attempt is made to
replace or add the data to the output data set.

Refer to the execution parameter ADD for information about adding members
to the data set.

SUMMARY
Specifies that a report summarizing the network definition options and
defaults is to be printed in the SYSPRINT data set.

XREF
Specifies that a cross-reference report is to be printed. If you do not specify
either XREF or NOXREF, a cross-reference report is printed.

Using JCL
The following shows sample JCL to run the Preprocessor on MVS.
//PREPJOB JOB MSGLEVEL=1
//STEP1 EXEC PGM=ITPENTER,PARM=’PREP,ADD,NOLIST’,REGION=2048K
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//PARMDD DD DSNAME=WSIM.PARMDD,DISP=SHR
//RATEDD DD DSNAME=WSIM.SITPRTBL,DISP=SHR
//INITDD DD DSNAME=WSIM.TESTFILE,DISP=SHR
//MSGDD DD DSNAME=WSIM.MSGFILE,DISP=SHR
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))

Chapter 3. Using the Preprocessor and ITPSYSIN to preprocess WSim scripts 19

//SYSPRINT DD SYSOUT=A
//SYSIN DD *
TESTNET NTWRK

.

.

.
/*

The following descriptions explain the JCL statements shown above.

Statement Function

PREPJOB JOB Initiates the job.

STEP1 EXEC Specifies the program name, ITPENTER, and the PREP execution
parameter. Refer to “Using Preprocessor execution parameters” on page
19 for more information about the optional parameters, such as ADD and
NOLIST.

STEPLIB DD Defines the data set containing the WSim host processor load modules.

PARMDD DD Defines an optional sequential data set containing ITPENTER execution
parameters. The following syntax rules apply to the records in this data
set.

v An asterisk (*) in column 1 denotes a comment record.

v One or more parameters may be coded on each record, delimited by
commas.

v Any data following a trailing blank is considered a comment.

v Leading blanks are allowed.

v A trailing comma is not required to indicate continuation of
parameters on the next record.

The BLKSIZE for this data set must be a multiple of 80. This statement is
optional.

RATEDD DD Defines the RATE tables file. This statement is required only if your
network contains a RATE statement.

INITDD DD Defines a partitioned data set to receive the network being processed.
The data set can already contain the network to be processed when using
the PREP statement, and it can be the same as the MSGDD data set. The
BLKSIZE for this data set must be a multiple of 80. This statement is
required.

MSGDD DD Defines a partitioned data set to receive the message generation decks
being processed. The data set may already contain the message
generation decks to be processed, and it can be the same as the INITDD
data set. The BLKSIZE for this data set must be a multiple of 80. This
statement is required.

SYSUT2 DD Defines a partitioned data set that the Preprocessor will use as work
space for storing network definition statements. The data set should be
large enough to contain all networks being preprocessed. This statement
is required if there are any NTWRK statements in the SYSIN data set.
This statement is not required if all networks are named by PREP
statements.

SYSUT3 DD Defines a partitioned data set that the Preprocessor will use as work
space for storing the message generation decks. The data set should be
large enough to contain all message generation decks being processed. It
must not be the same data set defined by SYSUT2. This statement is
required if there are any MSGTXT or MSGUTBL statements in the SYSIN
data set.

20 WSim V1R1 Utilities Guide

Statement Function

SYSPRINT DD Defines the printer output. If you omit this statement, WSim allocates
this data set dynamically.

SYSIN DD Defines your input data (network definition statements and message
generation decks). This statement is required.

Using a TSO CLIST
The following example shows a CLIST used to run the Preprocessor under TSO.
An explanation of these statements can be found in “Using JCL” on page 19.
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(INITDD) DSNAME(’WSIM.TESTFILE’) SHR
ALLOC DDNAME(MSGDD) DSNAME(’WSIM.MSGFILE’) SHR
ALLOC DDNAME(RATEDD) DSNAME(’WSIM.SITPRTBL’) SHR
ALLOC DDNAME(PARMDD) DSNAME(’WSIM.PARMDD’) SHR
ATTRIB TEMPLST BLKSIZE(800) DSORG(PO)
ALLOC DDNAME(SYSUT2) NEW SPACE(5,5) CYLINDERS DELETE UNIT(SYSDA)

DIR(3) USING(TEMPLST)
ALLOC DDNAME(SYSUT3) NEW SPACE(5,5) CYLINDERS DELETE UNIT(SYSDA)

DIR(3) USING(TEMPLST)
ALLOC DDNAME(SYSIN) DSNAME(’USER.NETNAME.DATA’) SHR
CALL ’WSIM.SITPLOAD(ITPENTER)’ ’PREP,REPL,SUMMARY’
FREE DDNAME(SYSPRINT)
FREE DDNAME(INITDD)
FREE DDNAME(MSGDD)
FREE DDNAME(RATEDD)
FREE DDNAME(PARMDD)
FREE DDNAME(SYSUT2)
FREE DDNAME(SYSUT3)
FREE DDNAME(SYSIN)

Understanding Preprocessor return codes
After running, the Preprocessor sets a return code to indicate the status of the
execution. The Preprocessor can return the following codes:

Code Meaning

0 The run completed with no errors.

4 Storage was not available for preprocessor execution. The preprocessor stops.

8 OPEN failed for one of the input, output, or work data control blocks, or
ATTACH failed for the initiator subtask. The preprocessor stops.

12 An invalid execution parameter was specified. The preprocessor stops.

16 Message generation decks were entered without a network definition, and the
decks were not processed.

20 Network initialization ended with errors for at least one of the networks in the
input data stream.

24 A STOW (partitioned data set directory update) failed for one of the output data
sets. The preprocessor stops.

36 Error reading data from the SYSIN input data set. The preprocessor stops.

Chapter 3. Using the Preprocessor and ITPSYSIN to preprocess WSim scripts 21

Using ITPSYSIN
You can use a subset of the Preprocessor functions by running the ITPSYSIN utility
program. ITPSYSIN stores message generation decks and network definition
statements in the appropriate data set without checking syntax. ITPSYSIN runs
much faster than the Preprocessor. If you plan to use WSim immediately after you
run the Preprocessor and are sure you did not make a syntax error:
v Use ITPSYSIN instead of the preprocessor
v Initialize the network with the list option to get a listing of the network.

This way, the syntax of the statements in the network is checked only once (when
initialized) instead of twice.

You can use ITPSYSIN any time you do not need the syntax checking facilities of
the Preprocessor. For example, you could use ITPSYSIN for a personalized library
system, previously preprocessed networks, automatically generated networks, or
any other situations where you already know the syntax is correct.

Note: When using ITPSYSIN, remember that the syntax of the networks will still
be checked when they are initialized. You must correct all errors before WSim can
execute a network.

Understanding ITPSYSIN input and output
ITPSYSIN reads the SYSIN data stream and stores the network definition
statements and message generation decks in the data sets defined by the INITDD
and MSGDD DD statements, respectively. ITPSYSIN does not check the syntax of
the network definition statements or message generation decks.

Running ITPSYSIN
The following sections give examples of JCL and a TSO CLIST to run ITPSYSIN, as
well as how to run ITPSYSIN from the WSim/ISPF Interface.

Using the WSim/ISPF Interface
To run ITPSYSIN from the WSim/ISPF Interface, follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 2 from the WSim/ISPF Interface main panel and press Enter. The
Preprocess Networks and Message Decks panel is displayed.

Note: You can also type “PREP” on the command line and press Enter to
display this panel.

3. Fill in the appropriate information on this panel.
4. Type “N” in the Check syntax field.
5. Press Enter to run the utility.

For more information on the WSim/ISPF Interface, see Chapter 2, “Running WSim
with the WSim/ISPF Interface,” on page 5.

Using JCL
The following shows sample JCL to run ITPSYSIN on MVS.

22 WSim V1R1 Utilities Guide

//SYSINJOB JOB MSGLEVEL=1
//JOBLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//STEP1 EXEC PGM=ITPSYSIN
//INITDD DD DSNAME=WSIM.TESTFILE,DISP=SHR
//MSGDD DD DSNAME=WSIM.MSGFILE,DISP=SHR
//SYSIN DD *
TESTNET NTWRK

.

.

.
/*

Using a TSO CLIST
The following is an example of a CLIST to run ITPSYSIN under TSO.
ALLOC DDNAME(INITDD) DATASET(’WSIM.TESTFILE’) SHR
ALLOC DDNAME(MSGDD) DATASET(’WSIM.MSGFILE’) SHR
ALLOC DDNAME(SYSIN) DATASET(’USER.NETNAME.DATA’) SHR
CALL ’WSIM.SITPLOAD(ITPSYSIN)’
FREE DDNAME(INITDD MSGDD SYSIN)

Understanding ITPSYSIN return codes
After running, ITPSYSIN sets a return code to indicate the status of the execution.
ITPSYSIN can return the following codes:

Code Meaning

0 The run completed with no errors.

4 The SYSIN data set failed to open.

8 The MSGDD data set failed to open.

16 Storage was not available for ITPSYSIN execution.

20 A STOW (partitioned data set directory update) failed for the networks or
message decks.

Refer to WSim Messages and Codes for informational and error messages that
originate from the preprocessor and ITPSYSIN.

Chapter 3. Using the Preprocessor and ITPSYSIN to preprocess WSim scripts 23

24 WSim V1R1 Utilities Guide

Chapter 4. Using the Loglist Utility to format the log data set

The Loglist Utility produces formatted reports of the activity recorded in the WSim
log data set. You can specify a report for all the resources in the WSim log data set
or for specific network resources. For information about message logging, time
stamping messages, and how data messages are written to the log data set, refer to
Chapter 12, “Understanding message logging,” on page 163.

The Loglist Utility has two input sources: the WSim log data set and a group of
control statements. The log data set is typically stored on a tape or disk, and the
control statements may be provided either from a file or in response to
write-to-operator-with-reply (WTOR) messages at the console. You can run the
Loglist Utility using JCL, a TSO CLIST, or from the WSim/ISPF Interface.

Before you use the Loglist Utility, you need to decide which type of reports and
records you want to produce. To do that, you need to know the meanings of the
headers on the reports. Then, to run the Loglist Utility, you need to use control
commands. The sections in this chapter present information about the following
items:
v The types of records and reports you can obtain with the Loglist Utility
v The Loglist Utility output header
v The Loglist Utility display attribute table header
v How to run the Loglist Utility, including:

– Running the Loglist Utility from the WSim/ISPF Interface
– Execution parameters to use with JCL or a TSO CLIST
– Examples of JCL and a TSO CLIST for running the Loglist Utility
– Sample output from an example of an input command file
– Return codes after running the Loglist Utility.

Information you can obtain with the Loglist Utility
This section describes the different log data set records that you can format with
the Loglist Utility.

SNA resource records
For SNA resource records, if you use the NOFMT control command for the Loglist
Utility, all transmit and receive records for simulated SNA resources are printed
only in hexadecimal characters. Otherwise, they are formatted in the output listing.
The formatted output breaks each SNA transaction into its logical components and
describes the meaning of the bits and data fields in the components.

The first line printed after the log header identifies the transaction as an SNA
request or response that was transmitted or received. If the request or response
unit (RU) contains a command, the command name is printed.

The next three output lines format the transaction into the Data Link Control
(DLC) fields, the transmission header (TH), and the request or response header
(RH).

Note: The RH line is not present if the transaction is a middle or last segment.

© Copyright IBM Corp. 1985, 2015 25

The next output line is the request/response unit (RU), printed in hexadecimal
characters and then translated to EBCDIC as in a storage dump. The only RU that
is formatted into words is the BIND command.

NS (Network Services) RUs that flow between the WSim SNA layer and the
VTAM/WSim subtask interface layer are identified by a plus sign in the first
column of the record type field in the log record header (+XMIT or +RECV). This
indicates that the RU cannot be sent or did not originate from VTAM and was
processed or generated by the WSim/VTAM subtask interface layer.

Refer to WSim User's Guide for more specific information about when messages are
logged.

TCP/IP resource records
You can include some special information and log records for simulated TCP/IP
resources.

For Telnet 3270 simulations that include OPTIONS=(DEBUG) in the NTWRK
definition, Telnet negotiation options and partial 3270 data buffers are included in
the loglist output with a %RECV record header. A single 3270 data buffer may
arrive in pieces. Coding the DEBUG option causes each piece to log separately
with a %RECV log record header. Once all pieces are received, the complete 3270
data buffer is logged as usual.

For FTP clients, the header information indicates whether the logged data flows on
the command connection or data connection. Commands that control file transfer
flow on the command connection, and actual file data flows on the data
connection. Commands entered by the simulated FTP user to be interpreted by the
WSim FTP simulation are logged as %XMIT records. Commands and data built by
WSim and transmitted to the FTP server are logged as normal XMIT records.
Information actually received from the server is logged as RECV records, but
messages built by WSim and passed to the simulated client as if received are
logged as %RECV records.

Messages flowing on the command connection are logged in EBCDIC even though
they flow in ASCII. File data on the data connection is logged as it flows. If WSim
is aware that thefile data is ASCII data; the data is interpreted accordingly in the
character portion of the loglist output.

For Simple TCP or UDP client simulation, all data sent is logged as XMIT records
and all data received is logged as RECV records. In addition, a null message
(XMIT or RECV record with no data) is logged when a connection to a remote host
is broken. An XMIT null record indicates that the breaking of the connection was
instigated by the WSim script. A RECV null message indicates that the connection
was broken at the instigation of the server.

Loglist data output and display
The WSim loglist data output for Simple TCP and Simple UDP is formatted as
ASCII and EBCDIC data with 24 bytes of hex data with ASCII and EBCDIC
interpretations. ASCII data will be framed with '<' and '>' characters.

Informational records
An informational record is written to the log data set for a particular resource
when an error occurs during a simulation, when WSim accomplishes an action or

26 WSim V1R1 Utilities Guide

state change, or when a user exit routine starts logging data for the WSim exit
interface. The data is printed immediately following the formatted log header.
EBCDIC data is printed as is, and hexadecimal data is printed in hexadecimal
characters and translated to EBCDIC as in a storage dump.

LOG records
You can use the LOG statement to write WSim control blocks and data areas to the
log data set. WSim uses the following headers to describe the control blocks and
data areas when the LOG record is formatted:

SAVEAREA (Followed by a number)
Indicates that a dump of the specified device or network save area follows.

USERAREA
Indicates that a dump of the device user area follows.

NETWORK USERAREA
Identifies the record as a dump of the network user area.

SEQUENCE AND INDEX COUNTERS
Indicates a dump of the sequence counter followed by the index counters
for each of the resource levels according to the following order: network,
terminal, and device or logical unit.

NETWORK AND DEVICE SWITCHES
Indicates a dump of the 4095 network-level switches followed by the 4095
switches for the current device or logical unit. The leftmost bit of the
network switches is NSW1 and the rightmost bit is NSW4095. The leftmost
bit of the device switches is SW1 and the rightmost bit is SW4095.

The following headers identify dumps of WSim control blocks:

DEV Device or logical unit control block

NCB Network control block

TRM Terminal control block.

Message trace records
If the MSGTRACE option for a simulation run was specified in your network
definition statement or with the A (Alter) command, messages providing data
about the logic tests will appear on the log data set. A message trace record will be
present for each logic test for which execution was attempted for each device. The
Loglist Utility does not list these message trace records individually; the records
are grouped by device name for a single pass through the logic test routine. That
is, a single group of message trace (MTRC) records on the Loglist Utility output
report will correspond to a single message transmission or receipt for a particular
device. For transmit messages, the set of message trace records for the logic tests
on the transmitted data will be listed on the output report before the actual transmit
message. For receive messages, the set of message trace records for the logic tests
on the received data will be listed on the output report after the actual received
message.

STL trace records
The STL trace facility, like the message trace facility, traces the messages of a WSim
simulation; however, the STL facility traces activity at the STL program level. To
use the STL facility, you must specify the STLTRACE option for a simulation run in
your network definition or with the A (Alter) operator command. You must also

Chapter 4. Using the Loglist Utility to format the log data set 27

code an @PROGRAM statement in your STL program or specify the PROGRAM
execution parameter and not specify NOPDSOUT when you run the STL
Translator. WSim will log the STL trace records to the log data set, enabling you to
uncover errors in program logic when you format the records using the Loglist
Utility. Refer to WSim Script Guide and Reference for information about STL
programs and coding STL statements.

CPI-C trace records
WSim logs CPI-C trace records using the CTRC record type. The CPITRACE
operand on a TP network definition statement specifies the level of CPI-C tracing
to be performed. Either the CPI-C verbs themselves, or messages tracing the CPI-C
verb flows, can be written to the log data set for formatting by the WSim loglist
program. If CPITRACE=VERB, VERBEND, or MSG, information providing data
about the CPI-C verbs will appear on the log data set. For more information about
the levels of CPI-C tracing, refer to WSim Script Guide and Reference.

WSim logs CPI-C attach requests and send and receive data as XMIT and RECV
records. The MLOG network definition operand controls the logging of these
records. You can also use the Response Time Utility to analyze these records.

Verification reports
When coded for a Loglist Utility run, the VERIFY command causes all VRFY log
records to be processed within the boundaries of the run as specified by other
Loglist Utility commands. VRFY record processing consists of two types of reports:
v Verification Detail Reports
v Verification Summary Report.

The following sections describe both types of verification reports.

Verification Detail Reports
Verification Detail Reports appear in the Loglist Utility output wherever one or
more VRFY records are encountered. These reports are interspersed with other
Loglist Utility output records. Figure 9 shows the format of a Verification Detail
Report.

Each Verification Detail Report record contains fields for a description, location,
length, condition, expected value, and actual value. The contents of some of these
fields vary. Refer to WSim Script Guide and Reference for more information about the
VERIFY action of IF statements and VERIFY statements in STL.

The following sections discuss the five general categories of IF statements:
v Data tests

VERIFICATION REPORT
DESCRIPTION LOCATION LENG COND EXPECTED VALUE ACTUAL VALUE

======================= =========== ===== == ============================= ===================
SA1 OK 1+0 11 EQ SAVE AREA 1 SAVE AREA 1
N4095 OK N4095+0 18 EQ NET SAVE AREA 4095 NET SAVE AREA 4095
DC1 OK DC1 EQ 1 1
DC4095 OK DC4095 EQ 4095 4095
SW1 OK SWITCH SW1 1
NSW4095 OK SWITCH NSW4095 1
SW1&TSW666&NSW4095 OK SWITCHES SW1&TSW666&NSW4095 111
NSW3000│SW99│TSW666 OK SWITCHES NSW3000│SW99│TSW666 001
SW1│..│SW7 OK SWITCHES SW1│SW2│SW3│SW4│SW5│SW6│SW7+ 1000000001000000
SW10│..│SW7 OK SWITCHES SW10│SW2│SW3│SW4│SW5│SW6│SW7+ 0000000001000000

Figure 9. Example of a Verification Detail Report

28 WSim V1R1 Utilities Guide

v Event tests
v Cursor position tests
v Switch tests
v Counter and Integer tests.

Verification Detail Report contents for data tests: Data tests are tests that specify
the location of character data. These represent character data tests. They test the
character data at the designated location. For STL, this is the left side of the simple
condition. For the WSim Scripting Language, this is on the LOC or the
LOCTEXT=(data) operand of the IF statement. These locations are shown below:
v LOC=B+ (or B–)
v LOC=C+ (or C–)
v LOC=D+
v LOC=TH+
v LOC=RH+
v LOC=RU+
v LOC=N+ (or N–)
v LOC=U+ (or U–)
v LOC=s+
v LOC=(row,col)
v LOC=Ns+
v LOCTEXT=(data).

For data tests, the Verification Detail Report fields contain the following
information:

Heading Field Description

DESCRIPTION The first 50 characters of the optional description coded on the
VERIFY action.

LOCATION WSim Scripting Language: The value specified on the LOC or
LOCTEXT operand of the IF statement. If LOCTEXT=(data) was
coded, this value will be TEXT.

STL: The WSim resource mapping to the left side of the simple
condition (the actual text).

LENG WSim Scripting Language: The length of the expected text. If the
AREA and LENG operands were coded on the IF statement, this
value will be the value of the LENG operand. If TEXT=(data) was
coded, this value will be the length of the data specified. If TEXT=xx
was coded (test under mask), this value will be 1.

STL: The length of the actual text.

COND WSim Scripting Language: The value of the COND operand on the IF
statement, indicating the condition used to evaluate the logic test.
Possible values are EQ (equal), NE (not equal), GT (greater than), GE
(greater than or equal to), LT (less than), and LE (less than or equal
to).

STL: The relational operator separating the actual and expected
expressions. The values displayed here relate to the STL relational
operators as follows: EQ and =, NE and ¬, GT and >, GE and >=, LT
and <, and LE and <=.

Chapter 4. Using the Loglist Utility to format the log data set 29

Heading Field Description

EXPECTED VALUE WSim Scripting Language: The expected data as coded on the
TEXT=(data) operand or as specified by the AREA and LENG
operands. Only the first 29 characters (15, if HEX=YES is specified on
the VERIFY Loglist Utility command) of the expected data will be
printed on the report. If the UTBL operand was coded on the IF
statement, there will be no expected data printed. In this case, (UTBL)
will be printed for the Expected Value. For tests under mask
(TEXT=xx), (MASK) will be printed following the mask to be tested.

STL: The right side of the simple condition. Only the first 29
characters are printed. If you coded UTBLSCAN, this appears as
(UTBL). For tests under mask (&= operator), (MASK) will be printed
following the mask to be tested.

ACTUAL VALUE WSim Scripting Language: The actual data found at the location
specified on the LOC operand. If the SCAN operand was coded on
the IF statement, there will be no actual data printed. In this case,
(SCAN) will be printed for the ACTUAL VALUE.

STL: The left side of the simple condition. Only the first 29 characters
of data are printed.

Notes:

v Nonprintable characters in the expected and actual data will be translated to
periods (.) unless the HEX=YES operand is coded on the Loglist Utility VERIFY
command. Refer to “VERIFY and NOVERIFY data type selection commands” on
page 60 for more information about the Loglist Utility VERIFY command.

v If either side of a comparison (EXPECTED VALUE or ACTUAL VALUE) is null,
then (NULL) will be printed on the appropriate side.

Verification Detail Report contents for event tests: Event tests determine whether
an event has been posted. For the WSim Scripting Language, event tests are tests
that specify the EVENT operand on the IF statement. For STL, event tests are tests
that specify the POSTED function.

For event tests, the Verification Detail Report fields contain the following
information:

Heading Field Description

DESCRIPTION The first 50 characters of the optional description coded
on the VERIFY action.

LOCATION EVENT.

LENG (NA)—not applicable for event tests.

COND (NA)—not applicable for event tests.

EXPECTED VALUE The name of the event being tested.

ACTUAL VALUE (NA)—not applicable for event tests.

Verification Detail Report contents for cursor position tests: Cursor position tests
are tests that specify the CURSOR operand on the IF statement. They test the
current position of the cursor on a simulated display panel. These reports are not
applicable for STL.

30 WSim V1R1 Utilities Guide

For cursor position tests, the Verification Detail Report fields contain the following
information:

Heading Field Description

DESCRIPTION The first 50 characters of the optional description coded on the
VERIFY action.

LOCATION CURSOR.

LENG (NA)—not applicable for cursor position tests.

COND (NA)—not applicable for cursor position tests.

EXPECTED VALUE (row,col)—the value coded on the CURSOR=(row,col) operand of
the IF statement.

ACTUAL VALUE (row,col)—the actual location of the cursor when the test was
made.

Verification Detail Report contents for switch tests: Switch tests test the settings
of one or more network, terminal, or device switches. For the WSim Scripting
Language, switch tests specify the LOC operand with one or more switches on the
IF statement (for example, LOC=NSW1, LOC=TSW20&SW5). For STL, switch tests
test a bit variable or function for true or false. This can be either a shared or
unshared bit variable.

For switch tests, the Verification Detail Report fields contain the following
information:

Heading Field Description

DESCRIPTION The first 50 characters of the optional description coded
on the VERIFY action.

LOCATION SWITCH (or SWITCHES if more than one switch was
tested).

LENG (NA)—not applicable for switch tests.

COND (NA)—not applicable for switch tests.

EXPECTED VALUE A string of 24 hexadecimal digits representing the
switches named on the LOC operand. The first eight
digits represent the 4095 device switches, with the
leftmost bit representing SW1 and the rightmost bit
representing SW4095. The second eight digits represent
the terminal switches named on the LOC operand, and
the last eight digits represent the network switches
named. If more than one switch was specified on the IF
statement, (&) or (│) will follow the 24-digit string
indicating the operator that was coded to combine the
switches on the LOC operand. Refer to WSim Script
Guide and Reference for more information about the
LOC operand of an IF statement.

ACTUAL VALUE Another string of 24 hexadecimal digits. This string
represents the actual device, terminal, and network
switch settings at the time of the test. The format for the
actual value is the same as the format for the expected
value.

The following two examples show the format for the expected value and actual
value fields for switch tests, depending on how the LOC operand of the IF
statement was coded:

Chapter 4. Using the Loglist Utility to format the log data set 31

Example 1:

LOC=SW1 was coded on the IF statement. There were no switches set at the time
of the test.
EXPECTED VALUE ACTUAL VALUE
============================= ==========================
80000000 00000000 00000000 00000000 00000000 00000000

Example 2:

LOC=SW1│TSW5│TSW6│TSW7 was coded on the IF statement. Switches actually
set at the time of the test were SW9, SW11, and NSW22.
EXPECTED VALUE ACTUAL VALUE
============================= ============================
80000000 0E000000 00000000 (│ 00A00000 00000000 00000400

Verification Detail Report contents for counter and number tests: For the WSim
Scripting Language, counter tests are tests that specify the LOC or LOCTEXT
operand with a counter on the IF statement. (For example, LOC=DESQ, LOC=NC7,
or LOCTEXT=DC2.) They test the value of the counter specified. Number tests are
tests that specify the LOCTEXT=number operand on the IF statement. For STL,
counter tests are tests of an integer variable or integer expression, such as
day_of_week > 15.

For counter and number tests, the Verification Detail Report fields contain the
following information:

Heading Field Description

DESCRIPTION The first 50 characters of the optional description coded on the
VERIFY action.

LOCATION The name of the counter tested (for example, DSEQ). If
LOCTEXT=number is coded, this value will be NUMBER.

LENG (NA)—not applicable for switch tests.

COND WSim Scripting Language: The value of the COND operand
on the IF statement, indicating the condition used to evaluate
the logic test. Possible values are EQ (equal), NE (not equal),
GT (greater than), GE (greater than or equal to), LT (less than),
and LE (less than or equal to).

STL: The relational operator separating the actual and
expected expressions. The values displayed here relate to the
STL relational operators as follows: EQ and =, NE and ¬, GT
and >, GE and >=, LT and <, and LE and <=.

EXPECTED VALUE WSim Scripting Language: Either the numeric value specified
on the TEXT=integer operand of the IF statement, or the
numeric value of the counter named on the TEXT=cntr
operand.

STL: The result of evaluating the expected integer expression
coded on the right side of the simple expression.

ACTUAL VALUE WSim Scripting Language: The actual value of the tested
counter.

STL: The result of evaluating the actual integer expression
coded on the left side of the simple expression.

32 WSim V1R1 Utilities Guide

Verification Summary Reports
The second type of report generated by the VERIFY function is the Verification
Summary Report. It is generated at the end of a Loglist Utility run. This report
gives the total number of VRFY records encountered for each unique description
zone as determined by the ZONE=(x,y) operand and a total count of all VRFY
records encountered. Refer to “VERIFY and NOVERIFY data type selection
commands” on page 60 for more information about the ZONE operand. Figure 10
shows an example of the Verification Summary Report.

Log record header
The header lines at the top of each output page identify the fields in the log record
header. The meanings of the formatted fields are as follows:

NETWORK NAME
The name of the WSim network for this message.

APPCLU/TCPIP/VTAMAPPL NAME
The ID and NAME fields are one of the following:
v For a TCP/IP connection, NAME is the value coded in the name field of

the TCPIP statement.
v For a VTAM application, NAME is the value coded in (or defaulted to)

the name field of the VTAMAPPL statement.
v For a CPI-C transaction program, NAME is the value coded in (or

defaulted to) the name field of the APPCLU statement.

DEV/LU/TP NAME
The name of the simulated resource that generated or received this
message. If the resource is an SNA logical unit, the current session number
is appended to the LU name. If the resource is a CPI-C transaction
program (TP), the current TP instance number is appended to the TP
name.

START TIME, STOP TIME, READY TIME
These are the message time stamps. For more information about time
stamps, refer to Chapter 12, “Understanding message logging,” on page
163.

RECORD TYPE
The record type can be one of the following. Refer to Chapter 12,
“Understanding message logging,” on page 163 for more information
about record types.

XMIT Data transmitted by a simulated resource.
Note: These records can be prefixed by % or +. See “Information
you can obtain with the Loglist Utility” on page 25 for an
explanation of these prefixes.

VERIFICATION SUMMARY REPORT

COUNT DESCRIPTION ZONE COUNT DESCRIPTION ZONE
7 SCREEN-A VERSION-B 12 SCREEN-A VERSION-C
2 SCREEN-B VERSION-A 4 SCREEN-X VERSION-Y

100 SCREEN-1 VERSION-2 2 SCREEN-9 VERSION-1
29 SCREEN-4 VERSION-5 37 SCREEN-2 VERSION-3
1 SCREEN-7 VERSION-8 1 SCREEN-7 VERSION-9

TOTAL VERIFY RECORDS = 195

Figure 10. Example of the Verification Summary Report

Chapter 4. Using the Loglist Utility to format the log data set 33

RECV Data received by a simulated resource.
Note: These records can be prefixed by % or +. See “Information
you can obtain with the Loglist Utility” on page 25 for an
explanation of these prefixes.

INFO Informational data written as the result of an error or a user request

MARK Marker record to indicate one minute of elapsed time in the
simulation run

MTRC Message generation trace records for a simulated resource

STRC STL trace records for a simulated resource

CNSL Console record containing a WSim operator command or its
response

DSPY 3270 and 5250 display or printer buffers

LOG Data written as a result of the LOG statement or IF statement LOG
operand

VRFY Verification report data

CTRC CPI-C trace records for a simulated transaction program.

HEADER FLAGS
The two bytes of record type flags and three bytes of modifier flags from
the log data set record header.

DATA LENG
The length of the data in the record not including the log header.

TYPE The 1-byte WSim code for the simulated resource. The codes are defined in
Chapter 11, “Simulated resource type codes,” on page 161.

MESSAGE DECK
The name of the current message generation deck for the simulated
resource.

USER DATA
The 1-byte user field set by the TEXT statement printed in hexadecimal
and character formats.

SEQUENCE NUMBER
The number of messages written to the log data set for the simulated
resource.

Note: Display images (logged as a result of the LOGDSPLY operand) will
be sequenced separately from all other record types for a device.

Log display attribute table header
The header lines of the attribute table for log display records (DSPY) identify bit
definitions of the attribute byte. You can get the attribute table when you code the
ATTR operand on the DSPLY command. Refer to Figure 12 on page 40 for an
example of Loglist Utility output. The following fields are used in the attribute
table header:

ROW The screen image row where this attribute byte is located

COL The screen image column where this attribute byte is located

U/P Indicates whether the field is protected or unprotected

A/N Indicates an alphanumeric or numeric field

34 WSim V1R1 Utilities Guide

HI Indicates high intensity

SEL Indicates whether or not the field is selector-pen detectable

NDP Indicates a nondisplayable, nonprintable, or nondetectable field

MDT Modified data tag indicator

HLT Indicates type of highlighting (underline, reverse, or blink)

COLOR Indicates color of field

CST Gives the character set used

MF Indicates a mandatory fill field

ME Indicates a mandatory enter field

TG Indicates a trigger field

FO Indicates type of outlining (left, right, top, or bottom)

SOSI Indicates whether or not shift out/shift in is enabled for field.

Running the Loglist Utility
The Loglist Utility requires information about how you want to format the output
of the log data set. You supply this information by using control commands
entered from an input file or the console. The JCL or TSO CLIST you use to run
the Loglist Utility provides the following locations:
v Log data set
v Control command input file
v Loglist Utility program
v The printer

The following sections describe more information about the Loglist Utility:
v Coding control commands
v Execution parameters
v Examples of JCL and a TSO CLIST
v Output generated by a sample control command file

Note: If you want to write your own log analysis program, the Loglist Utility can
read the log, assemble segmented records, and, as an option, select specific record
types for processing. The Loglist Utility then passes these records to the
user-written analysis program using the Loglist Utility EXIT facility. For
information about user exit routines for the Loglist Utility, see WSim User Exits.

Coding the output format
To format output from the Loglist Utility, you can code control commands that tell
the utility which records to list. If you issue the utility's RUN command without
specifying any other control commands, the Loglist Utility formats every record
type for all of the simulated resources.

Table 1 on page 36 shows what causes the various types of log records to be
written to the log data set during WSim execution and which Loglist Utility
commands can be used to specify the inclusion of these records in the Loglist
Utility output.

Chapter 4. Using the Loglist Utility to format the log data set 35

Table 1. WSim Log record type cross reference

Record Type WSim Execution Loglist Utility
Command

Console Any messages written to the WSim operator
console, including those written from a
script

CNSL

Information Automatic INFO

Log LOG statement and LOG operand on IF
statement

LOG

Log Display LOG statement and LOGDSPLY operand DSPLY

Marker Automatic

Message Data MLOG=YES DATA

Message Trace MSGTRACE=YES MTRC

STL Trace STLTRACE=YES STRC

VRFY VERIFY operand on IF statement and
VERIFY statement in STL

VERIFY

CPI-C Trace CPITRACE=VERB or
CPITRACE=VERBEND or
CPITRACE=MSG

CTRC

See Chapter 5, “Specifying loglist control commands,” on page 45 for additional
information on coding loglist control commands.

Using the WSim/ISPF Interface
You can run the Loglist Utility from the WSim/ISPF Interface. To do this, follow
these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 7 from the WSim/ISPF Interface main panel and press Enter. The
Analyze Logged Data panel is displayed.

Note: You can also type “LOGLIST” on the command line and press Enter to
display this panel.

3. Fill in the appropriate information on this panel and press Enter to run the
Loglist Utility.

For more information on the WSim/ISPF Interface, see Chapter 2, “Running WSim
with the WSim/ISPF Interface,” on page 5.

Using Loglist Utility execution parameters
You can enter the following optional execution parameters in the PARM field for
the JCL EXEC statement or on the CALL statement for TSO CLISTS when you run
the Loglist Utility.

CONSOLE
Specifies that a write-to-operator-with-reply (WTOR) is issued to the WSim
operator console for the input control commands. If you do not specify
CONSOLE, the control commands are read from the SYSIN data set.

36 WSim V1R1 Utilities Guide

|

PRMODE=(LINE|SOSI1|SOSI2)
Indicates the type of system printer support available. When printing DBCS
data in 3270 log display records, specifying PRMODE indicates whether the
system printer leaves a space when an SO or SI character is printed. DBCS
data in console records is printed as-is.

You can specify the following values for PRMODE:

LINE Indicates that the system printer cannot print DBCS data. This is the
default value.

SOSI1 Indicates the system printer leaves a space when an SO or SI character
is encountered. When you specify PRMODE=SOSI1, extra blank
characters are not inserted into print records containing DBCS data
delimited by SO and SI characters.

SOSI2 Indicates that the system printer does not leave a space when an SO or
SI character is printed. When you specify PRMODE=SOSI2, extra blank
characters are inserted into print records containing DBCS data
delimited by SO and SI characters. These blanks maintain the character
spacing of simulated 3270 devices that display SO and SI characters as
blanks.

You must specify PRMODE=SOSI1 or PRMODE=SOSI2 to print DBCS data. If
you specify PRMODE=LINE, or do not specify PRMODE, DBCS data in 3270
log display records is formatted as SBCS data. This allows screen images
containing DBCS data to be printed on a non-DBCS printer.

PRTLNCNT=nnn
The PRTLNCNT parameter specifies the maximum number of lines to be
printed on a page of output before ejecting to a new page. The value for nnn is
an integer from 35 to 255. The default value for nnn is 60.

Note: If you want to see the entire screen for display images, increase
PRTLNCNT to be at least the number of lines on the screen plus 17. This,
however, may cause unusual page breaks or discarded output if you specify
more lines than your printer can actually print.

ROUTCDE=(n,n,...)
The ROUTCDE parameter specifies the message routing codes to be used in
writing Loglist Utility messages to the operator. Each n is a system routing
code that defines a console destination for every write-to-operator (WTO) and
WTOR message written by the Loglist Utility. The value for n is an integer
from 1 to 16. The default value for the ROUTCDE parameter is 8.

Using JCL
The following JCL statements are required to run the Loglist Utility on MVS.

Statement Function

LLJOB1 JOB Initiates the job.

STEP1 EXEC Specifies the program name.

STEPLIB DD Defines the data set containing the WSim host processor modules.

Chapter 4. Using the Loglist Utility to format the log data set 37

Statement Function

SYSPRINT DD Defines the output printer. SYSPRINT records may be either fixed or
variable length. For fixed length records, logical record lengths of 133
to 256 are accepted. For variable length records, logical record lengths
of 137 to 260 are accepted. In either case, the maximum length of
noncontrol printed data is 255 bytes. The default is fixed 133 byte
length with blocking supported.

Record lengths larger than 133 are utilized when PRMODE=SOSI1 or
PRMODE=SOSI2 is specified. A larger record length allows additional
DBCS data to be printed when the formatted 3270 log display images
are printed.

SYSUT1 DD Defines the log data set input file. The SYSUT1 DD statement
contains an optional BLKSIZE parameter defining the maximum
block size for the input data. If you specify this value, it should be
the same as the BLKSIZE parameter on the LOGDD DD statement
from the WSim JCL that created the log data set. If you do not
specify a BLKSIZE parameter, the value is taken from the LOGDD
data set if:

1. It is on a labelled tape and it is not overridden with the JCL (by
way of ALLOC)

2. It is on a disk data set and it is not overridden with the JCL (by
way of ALLOC).

SYSIN DD Defines the control command input file.

The following shows an example of the JCL that you can use to run the Loglist
Utility and to log the input data set on tape.
//LLJOB1 JOB
//STEP1 EXEC PGM=ITPLL
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//* MESSAGE LOGGING INPUT DATA SET ON TAPE
//SYSUT1 DD UNIT=TAPE,VOL=SER=LOGTAP,LABEL=(,NL),
// DISP=OLD
//SYSIN DD *

NTWRK TESTNET1,TESTNET2
RUN

VTAMAPPL VAPPL1
TERM WSIMAPP1
TERM WSIMAPP2

TIME 093600-094100
RUN
END

/*

The following example shows the JCL that you can use to log the input data set on
disk.
//LLJOB2 JOB
//STEP1 EXEC PGM=ITPLL
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//* MESSAGE LOGGING INPUT DATA SET ON DISK
//SYSUT1 DD DSN=WSIM.MSGLOG,DISP=SHR
//SYSIN DD *

NTWRK TESTNET1,TESTNET2
RUN

VTAMAPPL VAPPL1

38 WSim V1R1 Utilities Guide

TERM WSIMAPP1
TERM WSIMAPP2

TIME 093600-094100
RUN
END

/*

The commands in the above examples cause the Loglist Utility to process the log
data set twice. The first run will list all records on the data set that are for
networks TESTNET1 or TESTNET2. After the log data set is on tape, the tape is
rewound before the second set of commands (those following the first RUN
command) is processed. In the second run, records between the specified time
limits for all networks will be considered. The records for all logical units under
VTAMAPPL VAPPL1 will be listed. Only the records for logical units WSIMAPP1
and WSIMAPP2 will be listed for VTAMAPPL VAPPL1. Records for any other
logical units will not be listed.

Using a TSO CLIST
The following example shows the TSO CLIST that you can use to run the Loglist
Utility when the log data set is on disk.
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(SYSUT1) DSNAME(’WSIM.LOGDATA’) SHR
ALLOC DDNAME(SYSIN) DSNAME(’USER.LLCMNDS.DATA’) SHR
CALL ’WSIM.SITPLOAD(ITPLL)’
FREE DDNAME(SYSPRINT)
FREE DDNAME(SYSUT1)
FREE DDNAME(SYSIN)

Understanding sample output
The following pages contain some examples of the output created when you use
JCL, a TSO CLIST or the WSim/ISPF Interface to run the Loglist Utility with the
input command file shown in Figure 11. Figure 12 on page 40 through Figure 16 on
page 42 show the examples.

FMTSNA
T D3CNTL1
RUN
NOFMT
TERM D3CNTL1
RUN
TERM D3CNTL1
NOFMT SHORT
RUN
TERM SECLU-1
DSPLY
RUN
TERM SECLU-1
DSPLY ATTR
RUN

Figure 11. Command input to the Loglist Utility

Chapter 4. Using the Loglist Utility to format the log data set 39

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TYPE MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG DECK DATA NUMBER
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 RECV 8000 080000 116 E2 LU2SETUP 00 3

RECV BIND SESSION REQUEST
TH 2D0001010000 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=0
RH 6B8000 REQUEST SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 31010303 B1903080 008787F8 87000280 00000000 18500000 7E000007 C9E3D7C5 *.........gg8g........&;.=...ITPE*

00000020 C3C8D600 050009ED 156007D4 E5E2C1D7 D3F16011 D7B7EA26 F189FD0F 08D5C5E3 *CHO......-.MVSAPL1-.P...1i...NET*
00000040 C14BC1F1 D40E0DF3 D5C5E3C1 4BC9E3D7 C5C3C8D6 2C0A0108 40404040 40404040 *A.A1M..3NETA.ITPECHO.... *
00000060 2D0908E2 D5E7F3F2 F7F0F2 *...SNX32702 *

BIND SESSION FORMAT 0 TYPE=NON-NEGOTIABLE FM PROFILE 3 TS PROFILE 3
PRIMARY PROTOCOLS: RU CHAINING=MULTIPLE REQUEST MODE=IMMEDIATE RESPONSE REQUESTED=DEF OR EXC END BRACKET SENT
SECONDARY PROTOCOLS: RU CHAINING=MULTIPLE REQUEST MODE=IMMEDIATE RESPONSE REQUESTED=EXCEPTION END BRACKET NOT SENT
COMMON PROTOCOLS: SEGMENTS SUPPORTED FM HEADERS NOT ALLOWED BRACKETS RESET BETB BRACKET TERMINATION RULE 1

ALTERNATE CODE SET NOT USED HALF-DUPLEX FLIP-FLOP RECOVERY RESPONSIBILITY=PRIMARY
CONTENTION WINNER=SECONDARY

SECONDARY SEND PACING COUNT=NONE SECONDARY RECEIVE PACING COUNT=07 ADAPTIVE SESSION PACING SUPPORTED
SECONDARY MAXIMUM RU SEND SIZE=1024 PRIMARY MAXIMUM RU SEND SIZE=3840
PRIMARY SEND PACING COUNT=07 PRIMARY RECEIVE PACING COUNT=NONE
LU TYPE 2 DEFAULT SCREEN SIZE=024,080 ALTERNATE SCREEN SIZE=NONE
PRIMARY LU NAME=ITPECHO CRYPTOGRAPHIC FIELD=NONE
URC=0009ED1560

--
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 XMIT 8000 880000 10 E2 LU2SETUP 00 4

XMIT BIND SESSION RESPONSE
TH 2D0001010000 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=0
RH EB8000 RESPONSE SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 31 *. *

--
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 RECV 8000 080000 10 E2 LU2SETUP 00 5

RECV START DATA TRAFFIC REQUEST
TH 2D0001010401 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1,025
RH 6B8000 REQUEST SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU A0 *. *

--
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 XMIT 8000 880000 10 E2 LU2SETUP 00 6

XMIT START DATA TRAFFIC RESPONSE
TH 2D0001010401 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1,025
RH EB8000 RESPONSE SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU A0 *. *

--
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 RECV 8000 080000 134 E2 LU2SETUP 00 7

RECV (DATA) REQUEST
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 0390C0 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP BEGIN-END BRACKET
RU F5C7114E 7F1D68E6 C5D3C3D6 D4C540E3 D640C9E3 D7C5C3C8 D64B1D60 40C5D5E3 *5G.+"..WELCOME TO ITPECHO..- ENT*

00000020 C5D97EC5 C3C8D640 4040C3D3 C5C1D97E D9C5E2E3 D6D9C540 4040F561 F67EE2E3 *ER=ECHO CLEAR=RESTORE 5/6=ST*
00000040 D9C9D5C7 40D9C5D7 C5C1E340 4040F97E D9C5D7C5 C1E31150 50C5D5E3 C5D940C4 *RING REPEAT 9=REPEAT.&&ENTER D*
00000060 C1E3C140 E3D640C5 C3C8D640 C2C5D3D6 E67A11D1 5F1D4013 115D7F1D F0 *ATA TO ECHO BELOW:.J¬. ..)".0 *

Figure 12. Example of the Loglist Utility output using the FMTSNA command

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TYPE MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG DECK DATA NUMBER
WSIMNET1 VA1 LULU2-1 14475537 14475538 14475537 +XMIT 8000 880020 34 E2 LU2SETUP 00 1
00000000 2C000001 00010B80 00010681 01E2D5E7 F3F2F7F0 F2F308C9 E3D7C5C3 C8D64000 *...........a.SNX327023.ITPECHO .*
00000020 0000 *.. *
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 +RECV 8000 080020 12 E2 LU2SETUP 00 2
00000000 2C000100 00018B80 00010681 *...........a *
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 RECV 8000 080000 116 E2 LU2SETUP 00 3
00000000 2D000101 00006B80 00310103 03B19030 80008787 F8870002 80000000 00185000 *......,...........gg8g........&;*
00000020 007E0000 07C9E3D7 C5C3C8D6 00050009 ED156007 D4E5E2C1 D7D3F160 11D7B7EA *.=...ITPECHO......-.MVSAPL1-.P..*
00000040 26F189FD 0F08D5C5 E3C14BC1 F1D40E0D F3D5C5E3 C14BC9E3 D7C5C3C8 D62C0A01 *.1i...NETA.A1M..3NETA.ITPECHO...*
00000060 08404040 40404040 402D0908 E2D5E7F3 F2F7F0F2 *. ...SNX32702 *
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 XMIT 8000 880000 10 E2 LU2SETUP 00 4
00000000 2D000101 0000EB80 0031 *.......... *
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 RECV 8000 080000 10 E2 LU2SETUP 00 5
00000000 2D000101 04016B80 00A0 *......,... *
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 XMIT 8000 880000 10 E2 LU2SETUP 00 6
00000000 2D000101 0401EB80 00A0 *.......... *
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 RECV 8000 080000 134 E2 LU2SETUP 00 7
00000000 2C000101 00010390 C0F5C711 4E7F1D68 E6C5D3C3 D6D4C540 E3D640C9 E3D7C5C3 *.........5G.+"..WELCOME TO ITPEC*
00000020 C8D64B1D 6040C5D5 E3C5D97E C5C3C8D6 404040C3 D3C5C1D9 7ED9C5E2 E3D6D9C5 *HO..- ENTER=ECHO CLEAR=RESTORE*
00000040 404040F5 61F67EE2 E3D9C9D5 C740D9C5 D7C5C1E3 404040F9 7ED9C5D7 C5C1E311 * 5/6=STRING REPEAT 9=REPEAT.*
00000060 5050C5D5 E3C5D940 C4C1E3C1 40E3D640 C5C3C8D6 40C2C5D3 D6E67A11 D15F1D40 *&&ENTER; DATA TO ECHO BELOW:.J¬. *

Figure 13. Example of the Loglist Utility output using the NOFMT command

40 WSim V1R1 Utilities Guide

NETWORK APPL/TCPIP DEV/LU/TP START STOP READY RECORD DATA USER
NAME NAME NAME TIME TIME TIME TYPE LENG DATA

14472412 0102093 11000000 CNSL 76 Workload Simulator (WSim) Version 1, Release 1.0
14472437 0102093 11000000 CNSL 52 ITP029I INITIALIZATION COMPLETE FOR NETWORK WSIM
14472437 0102093 11000000 CNSL 32 ITP006I NETWORK WSIMNET1 STARTED
14472478 0102093 11000000 CNSL 67 ITP207I DISPLAY MONITOR SESSION STARTED WITH VTA
14474438 0102093 11000000 CNSL 49 ITP137I WSIMNET1 TPCLIENT-00001 - Starting CLIEN

WSIMNET1 VA1 LULU2-1 14475537 14475538 14475537 +XMIT 34 00 ..a.SNX327023.ITPECHO ...
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 +RECV 12 00 ..a
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 RECV 116 00gg8g........&;.=...ITPECHO......-.MVSAP
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 XMIT 10 00 .
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 RECV 10 00 .
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 XMIT 10 00 .
WSIMNET1 VA1 LULU2-1 14475538 14475538 14475538 RECV 134 00 5G.+"..WELCOME TO ITPECHO..- ENTER=ECHO CLEAR=

14475638 0102093 11000000 CNSL 50 ITP137I WSIMNET1 LULU2 -00001 - Starting ITPEC
WSIMNET1 VA1 LULU2-1 14475638 14475638 14475638 XMIT 30 00 ’J?.J-Hello ITPECHO 1
WSIMNET1 VA1 LULU2-1 14475638 14475638 14475638 RECV 43 00 1C.J-.. .+".. . Hello ITPECHO 1
WSIMNET1 VA1 LULU2-1 14475738 14475738 14475738 XMIT 30 00 ’J?.J-Hello ITPECHO 2
WSIMNET1 VA1 LULU2-1 14475738 14475738 14475738 RECV 43 00 1C.J-.. .+".. . Hello ITPECHO 2
WSIMNET1 VA1 LULU2-1 14475839 14475839 14475839 XMIT 30 00 ’J?.J-Hello ITPECHO 3
WSIMNET1 VA1 LULU2-1 14475839 14475839 14475839 RECV 43 00 1C.J-.. .+".. . Hello ITPECHO 3
WSIMNET1 VA1 LULU2-1 14475939 14475939 14475939 XMIT 30 00 ’J?.J-Hello ITPECHO 4
WSIMNET1 VA1 LULU2-1 14475939 14475939 14475939 RECV 43 00 1C.J-.. .+".. . Hello ITPECHO 4
WSIMNET1 VA1 LULU2-1 14480040 14480040 14480040 XMIT 30 00 ’J?.J-Hello ITPECHO 5
WSIMNET1 VA1 LULU2-1 14480040 14480040 14480040 RECV 43 00 1C.J-.. .+".. . Hello ITPECHO 5

14480042 0102093 11000000 CNSL 39 ITP137I WSIMNET1 TPCLIENT-00001 - Done!
14480140 0102093 11000000 CNSL 39 ITP137I WSIMNET1 LULU2 -00001 - Done!

WSIMNET1 VA1 LULU2-1 14480140 14480140 14480140 XMIT 21 00 ’JW.J-logoff
WSIMNET1 VA1 LULU2-1 14480140 14480140 14480140 RECV 34 00-.P...1i...NETA.A1M
WSIMNET1 VA1 LULU2-1 14480140 14480140 14480140 +XMIT 10 00 .

14480437 0102093 11000000 CNSL 45 ITP113I WSIMNET1 DEVSTCP - Starting MISCSERV
14480692 0102093 11000000 CNSL 44 ITP113I WSIMNET1 DEVTN32E - Starting ITPECHO
14481142 0102093 11000000 CNSL 33 ITP113I WSIMNET1 DEVSTCP - Done!
14481203 0102093 11000000 CNSL 33 ITP113I WSIMNET1 DEVTN32E - Done!
14550884 0102093 11000000 CNSL 4 zend
14550888 0102093 11000000 CNSL 47 ITP201I DISPLAY MONITOR FACILITY IS CLOSED DOWN

Figure 14. Example of the Loglist Utility output using the SHORT operand on the NOFMT command

Chapter 4. Using the Loglist Utility to format the log data set 41

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

USERAPPL APPL2 SECLU-1 14222660 0096001 11000000 DSPY 0200 080040 2294 E2 SECLU 00 2

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| | 1
2| | 2
3| XXXXX XX XXXXX XXXX XXXXX XX XXXXX XXX | 3
4| XXXXXX XX XXXXXX XXXXXX XXXXXX XX XXXXXX XXXX | 4
5| XX XX XX XX XX XX XX XX XX XX XX XX XX | 5
6| XXXXXX XX XX XX XXX XX XX XXXXXX XX XX XX XXX XX | 6
7| XXXXX XX XX XX XXX XX XX XXXXX XX XX XX XXX XX | 7
8| XX XX XX XX XX XX XX XX XX XX XX | 8
9| XX XX XXXXXX XXXXXX XX XX XXXXXX XXXX | 9
10| XX XX XXXXX XXXX XX XX XXXXX XXXX |10
11| |11
12| ENTER PASSWORD: ENTER PASSWORD: |12
13| |13
14| |14
15| XXXXX XX XXXXX XXXX XXXXX XX XXXXX XXXX |15
16| XXXXXX XX XXXXXX XXXXXX XXXXXX XX XXXXXX XXXXXX |16
17| XX XX XX XX XX XX XX XX XX XX XX XX XX XX |17
18| XXXXXX XX XX XX XXX XX XXXXXX XX XX XX XXX XX |18
19| XXXXX XX XX XX XXX XX XXXXX XX XX XX XXX XX |19
20| XX XX XX XX XX XX XX XX XX XX XX |20
21| XX XX XXXXXX XXXXXX XX XX XXXXXX XXXXXX |21
22| XX XX XXXXX XXXXXX XX XX XXXXX XXXX |22
23| |23
24| ENTER PASSWORD: ENTER PASSWORD: |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(1) COLUMN(1) AID: NULL DISPLAY AID WHEN LOGGED: BEGINNING OF MSG GEN ACTIVE PID=0
DIMENSIONS: (24, 80)
PID=0 VIEWPORT SIZE: (12, 40) VIEWPORT LOCATION: (1, 1) TO (12, 40)
PID=1 VIEWPORT SIZE: (12, 40) VIEWPORT LOCATION: (1, 41) TO (12, 80)
PID=2 VIEWPORT SIZE: (12, 40) VIEWPORT LOCATION: (13, 1) TO (24, 40)
PID=3 VIEWPORT SIZE: (12, 40) VIEWPORT LOCATION: (13, 41) TO (24, 80)

Figure 15. Example of the Loglist Utility output using the DSPLY command

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

USERAPPL APPL2 SECLU-1 14222660 0096001 11000000 DSPY 0200 080040 2294 E2 SECLU 00 2

A T T R I B U T E A T T R I B U T E
ROW COL U/P A/N HI SEL NDP MDT HLT COLOR CST MF ME TG FO SOSI ROW COL U/P A/N HI SEL NDP MDT HLT COLOR CST MF ME TG FO SOSI
3 7 P S 3 47 P S
4 7 P S 4 47 P S
5 7 P S 5 47 P S
6 7 P S 6 47 P S
7 7 P S 7 47 P S
8 7 P S 8 47 P S
9 7 P S 9 47 P S
10 7 P S 10 47 P S
12 9 P S X X 12 25 U X
12 31 P S 12 49 P S X X
12 65 U X 12 71 P S
15 7 P S 15 47 P S
16 7 P S 16 47 P S
17 7 P S 17 47 P S
18 7 P S 18 47 P S
19 7 P S 19 47 P S
20 7 P S 20 47 P S
21 7 P S 21 47 P S
22 7 P S 22 47 P S
24 9 P S X X 24 25 U X
24 31 P S 24 49 P S X X
24 65 U X 24 71 P S
NUMBER OF ATTRIBUTES= 44 P=PROTECTED U=UNPROTECTED N=NUMERIC S=AUTOMATIC SKIP
COLOR: B=BLUE R=RED P=PINK G=GREEN T=TURQUOISE Y=YELLOW W=WHITE

Figure 16. Example of the Loglist Utility output using the ATTR operand on the DSPLY command

42 WSim V1R1 Utilities Guide

Understanding Loglist Utility return codes
The only return code the Loglist Utility sets is 0, indicating the loglist was
formatted as specified.

Chapter 4. Using the Loglist Utility to format the log data set 43

44 WSim V1R1 Utilities Guide

Chapter 5. Specifying loglist control commands

The following sections provide an explanation of the control commands and
operands you can use to operate the Loglist Utility. To help you use this
information, they also explain the requirements to enter the coding and the coding
conventions for control commands and the categories of commands.

Coding the control commands
You can enter a command in any position of the input record. Operands cannot
extend past column 71, and they cannot be continued. Although you can separate a
command and its operand by more than one blank space, you must enter at least
one blank space between the command and its operand.

You must code all control commands in uppercase when using the control
command input file.

You can abbreviate some of the Loglist Utility control commands to a single letter.
For example,
D dev55

is equivalent to
DEV dev55

Note that the allowable abbreviations for the commands are listed underneath the
full command keyword. You can code either the full keyword or the abbreviation.

Understanding control command coding conventions
The following conventions are used in the control command descriptions:
v Capital letters represent values you code directly without change.
v Italics represent parameters for which you must supply a value.
v Brackets, [and], enclose operands or symbols that are either optional or

conditional.
An optional operand is an operand that you may choose to code or omit,
independent of other operands. Omitting it may cause a specific default value to
be assumed. The default value is always given in the operand description.
A conditional operand is an operand that you may need to code or omit,
depending on how you code (or omit) other operands on the control statement.
For each conditional operand, the conditions under which you should code or
omit the operand are indicated.

v Braces, { and }, indicate that an operand has a value that you must choose from
the stacked items.

v An ellipsis in parentheses, (...), indicates that you may code a sequence of values
within parentheses.

v Default values are underlined.

© Copyright IBM Corp. 1985, 2015 45

Control command categories
Control commands are in one of the following categories:
v General control
v Record selection

General control commands
General control commands specify general output characteristics and control the
execution of the loglist.

The following are general control commands:
END
EXIT
FMTSNA
HEADER
NOFMT
P
RUN
UPCASE
*

Record selection
Record selection control commands determine collectively which records in the
WSim log data set being processed are to be included in the loglist output. The
record selection category includes these subcategories:

Resource selection control commands
These commands select log records according to the simulated resource for
which they are logged.

Primary resource selection control commands
These commands point to a higher level resource such as a LINE
or VTAMAPPL which may include one or more lower level
resources.

Secondary resource selection control commands
These commands indicate more specific lower level resources to be
included or excluded, such as TERM or DEV.

Data type selection control commands
These commands specify the types of log records to be included or
excluded from the loglist output.

Overall selection control commands
These commands specify broader criteria for selecting the records beyond
resource names and data types.

Table 2 on page 47 shows which control commands belong to each category.

46 WSim V1R1 Utilities Guide

Table 2. Record selection control commands

Overall Selection Resource Selection Data Type Selection

MSGTXT

NTWRK

TIME

Primary Resource Selection
APPCLU
TCPIP
VTAMAPPL

Secondary Resource Selection
DEV
EXDEV
EXTERM
EXTP
TERM
TP

CNSL and NOCNSL

CTRC and NOCTRC

DATA and NODATA

DSPLY and NODSPLY

INFO and NOINFO

LOG and NOLOG

MTRC and NOMTRC

NOHDR

STRC and NOSTRC

VERIFY and NOVERIFY

Notes:

v If no selection control commands are entered, all records in the log data set will
be included in the output.

v If any resource selection control command is entered, the output will be
restricted to records for those resources thus selected (and CNSL commands).

v If any data type selection commands are entered, the output will be restricted to
those types included or those types not specifically excluded (except that CNSL
records are always listed unless specifically excluded).

v If a mixture of types of record selection commands are entered, only those
records that meet all criteria specified will be included in the output (again,
CNSL records are always included unless specifically excluded).

v All records, including CNSL records, must fall within the time limits specified to
be included in the output.

v If a secondary resource selection command is entered before any primary
resource selection command, primary resource selection commands will no
longer be valid. Secondary resource selection commands entered after primary
resource selection commands bear a hierarchical relationship to the first
preceding primary resource selection command.

v Inclusive and exclusive secondary resource selection commands cannot be mixed
under the same primary resource selection command or when no primary
resource selection command is specified.

APPCLU primary resource selection command

APPCLU name
A name

The APPCLU command specifies the name of an APPC LU in the simulation run
for which the listing will be performed.

name
Function: The name operand specifies the name of the APPC LU.

Format: The value of the name operand is a 1- to 8-character name that
matches the name coded on an APPCLU statement in the WSim network
definition.

Chapter 5. Specifying loglist control commands 47

CNSL and NOCNSL data type selection commands

CNSL

The CNSL command specifies that console command and console response records
are to be printed.

NOCNSL

The NOCNSL command specifies that console records are not to be printed. Unless
NOCNSL is specified, CNSL records will always be printed.

CTRC and NOCTRC data type selection commands

CTRC

The CTRC command specifies that CPI-C trace records are to be printed. When
WSim prints CPI-C trace records, it formats them in a form similar to that used in
SAA Common Programming Interface Communications Reference. The formatted verbs
show all the current parameter data, along with an indication of whether the
parameter is input or output.

If you specify the NOFMT control command, the separator lines do not appear in
the formatted loglist. If you specify NOFMT SHORT, WSim produces an
abbreviated form of the loglist with each CPI-C verb on a single line.

Note: CPI-C trace records will be written to the log data set for a particular
transaction program only if CPI-C tracing was requested for the transaction
program during the simulation run. CPI-C tracing is requested using the
CPITRACE operand of the TP network definition statement. CPITRACE must be
specified or defaulted to VERB, VERBEND, or MSG before CPI-C trace records for
the transaction program will be written to the log data set. If you specify
CPITRACE=NONE, no CPI-C trace data will be in the WSim log. The Loglist
Utility will be unable to print CTRC records if no CPI-C trace records are in the
log data set. For more information about the CPITRACE operand, refer to WSim
Script Guide and Reference.

NOCTRC

The NOCTRC command specifies that CPI-C trace records are not to be printed.
This command is required if CPI-C tracing is requested, but CPI-C trace records
are not to be printed.

48 WSim V1R1 Utilities Guide

DATA and NODATA data type selection commands

DATA

The DATA command specifies that transmit and receive data records are to be
printed.

NODATA

The NODATA command specifies that transmit and receive data records are not to
be printed.

DEV secondary resource selection command

DEV name[-num]
D name[-num]

The DEV command specifies the name of the device, logical unit (LU), or
transaction program (TP) for which the listing will be performed.

DEV, TERM, and TP commands can be used interchangeably.

If you want to specify individual secondary resources, you must enter a secondary
resource selection command, such as DEV, for each individual device, LU, or TP to
be listed. If the DEV command does not follow a valid primary resource selection
command, the name specified will be listed for all primary resources. If the DEV
command follows a valid primary resource selection command, the name specified
will be listed for that primary resource only. If no DEV or other secondary resource
selection commands are entered following a primary resource selection command,
then all secondary resources for the specified primary resource are listed.

name
Function: The name operand specifies the name of the device, logical unit (LU),
or transaction program (TP).

Format: The value of the name operand is a 1- to 8-character name that
matches the label name on a WSim network definition DEV, LU, or TP
statement.

num
Function: The num operand specifies either a single session number for an LU
with multiple session capability or a specific transaction program instance.

Format: For an LU, num can be any decimal integer from 1 to 65535. For TP
instances, num can be any decimal integer from 1 to 99999.

Note: If num is not appended to the LU name and multiple sessions exist for
the LU, all of the sessions are considered. If num is not appended to the TP
name and multiple instances exist for the TP, all of the instances are
considered.

Chapter 5. Specifying loglist control commands 49

DSPLY and NODSPLY data type selection commands

DSPLY [ATTR]
[,NONDISP]
[,PTNS]

The DSPLY command specifies that 3270 and 5250 log display records and 3270
printer buffer records are to be formatted and printed.

The log display records for partitions will be formatted to look the same as the
operator sees them on the panel. The partition viewports will be displayed
together as a single screen image. A map of the presentation space will be
displayed following the screen image.

Note: Only those display records (or printer buffer records) that were recorded in
the log data set can be printed. An LU1 is not a supported printer buffer record
type but an LU3 is a supported printer buffer record type. For the devices
mentioned above, you have the option of:
v Not logging the display buffer at all
v Logging the display buffer at the beginning of message generation
v Logging the display buffer at the end of message generation
v Logging the display buffer both at the beginning and end of message generation.

If (and when) display and printer buffer logging takes place is determined by the
value of the LOGDSPLY operand. Refer to WSim Script Guide and Reference for
more information about the LOGDSPLY operand.

ATTR
Function: The ATTR operand causes field and extended field attribute
specifications to be listed.

Note: The ATTR operand is not applicable to 3270 printer buffer formatting.

NONDISP
Function: The NONDISP operand causes nondisplayable fields to be printed.
Fields designated as nondisplayable (password fields, for example) will not be
printed unless the NONDISP operand is specified.

PTNS
Function: The PTNS operand also allows the partition presentation spaces for
each partition to be displayed separately.

NODSPLY

The NODSPLY command specifies that 3270 and 5250 log display records and 3270
printer buffer records are not to be formatted and printed.

END control command

END

50 WSim V1R1 Utilities Guide

The END command specifies that the Loglist Utility is to come to a normal
completion. No further processing occurs. This command is required. Any
commands entered since the last RUN command are ignored.

EXDEV secondary resource selection command

EXDEV name[-num]
EXD name[-num]

The EXDEV (exclude device) command specifies the name of the device, logical
unit (LU), or transaction program (TP) for which the listing will not be performed.

The EXDEV, EXTERM, and EXTP commands can be used interchangeably.

If you want to specify individual secondary resources, you must enter a secondary
resource selection command, such as EXDEV, for each individual terminal, device,
LU, or TP which you want to exclude from the listing.

If the EXDEV command follows a valid primary resource selection command, the
name specified will be excluded from the listing for that primary resource only. If
the EXDEV command does not follow a valid primary resource selection
command, the name specified will be excluded from the listing for all primary
resources.

name
Function: The name operand specifies the name of the terminal, device, logical
unit (LU), or transaction program (TP).

Format: The value of the name operand is a 1- to 8-character name that
matches the label name on a WSim network definition DEV, LU, or TP
statement.

num
Function: The num operand specifies either a single session number for an LU
with multiple session capability or a specific transaction program instance.

Format: For an LU, num can be any decimal integer from 1 to 65535. For TP
instances, num can be any decimal integer from 1 to 99999.

Note: If num is not appended to the LU name and multiple sessions exist for
the LU, all of the sessions are excluded. If num is not appended to the TP
name and multiple instances of the TP exist, all instances are excluded.

EXIT control command

EXIT [member]

The EXIT command specifies the user exit routine to be loaded by the Loglist
Utility and to be given control each time a log data set record is read that satisfies
the specifications of the other input control commands. Refer to WSim User Exits
for more information on user exits.

Chapter 5. Specifying loglist control commands 51

Note: If the EXIT command is omitted or is coded without a member name, the
current exit routine will be deleted.

member
Function: The member operand specifies the name of the user exit routine.

Format: The value of member is a 1- to 8-character name that conforms to
standard JCL naming conventions.

EXTERM secondary resource selection command

EXTERM name[-num]
EXT name[-num]

The EXTERM (exclude terminal) command specifies the name of the device, logical
unit (LU), or transaction program (TP) for which the listing will not be performed.

EXDEV, EXTERM, and EXTP commands can be used interchangeably.

If you want to specify individual secondary resources, you must enter a secondary
resource selection command, such as EXTERM, for each individual device, LU, or
TP that you want to exclude from the listing.

If the EXTERM command follows a valid primary resource selection command, the
name specified will be excluded from the listing for that primary resource only. If
the EXTERM command does not follow a valid primary resource selection
command, the name specified will be excluded from the listing for all primary
resources.

name
Function: The name operand specifies the name of the device, logical unit (LU),
or transaction program (TP).

Format: The value of the name operand is a 1- to 8-character name that
matches the name coded on a WSim network definition DEV, LU, or TP
statement.

num
Function: The num operand specifies either a single session number for an LU
with multiple session capability or a specific transaction program instance.

Format: For an LU, num can be any decimal integer from 1 to 65535. For TP
instances, num can be any decimal integer from 1 to 99999.

Note: If num is not appended to the LU name and multiple sessions exist for
the LU, all of the sessions are excluded. If num is not appended to the TP
name and multiple instances of the TP exist, all instances are excluded.

EXTP secondary resource selection command

EXTP name[-num]

The EXTP (exclude transaction program) command specifies the name of the
transaction program for which the listing will not be performed.

52 WSim V1R1 Utilities Guide

You must enter an EXTP command for each individual transaction program that
you want to exclude from the listing.

EXDEV, EXTERM, and EXTP commands can be used interchangeably.

If the EXTP command follows a valid APPCLU command, the name specified will
be excluded from the listing for that APPC LU only. If the EXTP command does
not follow a valid APPCLU command, the name specified will be excluded from
the listing for all APPC LUs.

name
Function: The name operand specifies the name of the transaction program
(TP).

Format: The value of the name operand is a 1- to 8-character name that
matches the name coded on a WSim network definition TP statement.

num
Function: The num operand specifies a specific transaction program instance.

Format: The value for num can be any decimal integer from 1 to 99999.

Note: If num is not appended to the TP name and multiple instances of the TP
exist, all instances are excluded.

FMTSNA and NOFMT control commands

FMTSNA

The FMTSNA command specifies that special formatting of SNA record headers
and Data Link Control (DLC) records is to occur. FMTSNA is the default
formatting option for all Loglist Utility runs. Any SNA or DLC records
encountered are decoded, and word descriptions of bit meanings and command
bytes are printed. All output records (SNA or non-SNA) are separated by a dashed
line.

NOFMT [SHORT]

The NOFMT command specifies that SNA and DLC records are not to be
formatted. This command is required if SNA or DLC formatting is not desired. If
NOFMT is specified, the dash line is not used to separate records on the output
report.

SHORT
Function: The SHORT operand specifies that all records will be printed in
abbreviated format on only one output line each, and that SNA records will
not be formatted into prose descriptions.

For SNA terminals, the first 50 bytes of the RU data will be printed.

For CPI-C transaction programs, the CPI-C trace formatting is abbreviated
when NOFMT SHORT is specified.

For all terminals, any unprintable characters in the data stream will be
translated to periods (.).

Chapter 5. Specifying loglist control commands 53

HEADER control command

HEADER data

The HEADER command specifies a header line for the formatted log data set
output.

data
Function: The data operand specifies the header line to be used.

Format: The data operand can be up to 27 characters, including blanks and
special characters. The data operand begins with the first nonblank character
after the HEADER command and ends with the character in column 71 or after
27 characters.

Default: If the HEADER command is omitted, the output header defaults to
“WSim LOGLIST OUTPUT”.

INFO and NOINFO data type selection commands

INFO

The INFO command specifies that the informational records are to be printed. If
INFO is not specified, informational records will be listed for those resources
matching other Loglist Utility command specifications.

NOINFO

The NOINFO command specifies that informational records are not to be printed.

LOG and NOLOG data type selection commands

LOG

The LOG command specifies that those records with the LOG type are to be
printed. These are records written to the log data set as a result of the LOG
statement or the LOG operand of the IF statement.

NOLOG

The NOLOG command specifies that records with the LOG type are not to be
printed.

54 WSim V1R1 Utilities Guide

MSGTXT overall selection command

MSGTXT name
M name

The MSGTXT command specifies the name of a message generation deck (or STL
procedure) for which the listing will be performed.

If any MSGTXT commands are entered, records selected will be limited to those
containing a MSGTXT name equal to one of those entered or containing no
MSGTXT name at all.

name
Function: The name operand specifies the name of the message generation deck
or STL procedure.

Format: The value of the name operand is a 1- to 8-character name that
matches the label name on a WSim message generation or STL MSGTXT
statement.

MTRC and NOMTRC data type selection commands

MTRC

The MTRC command specifies that MTRC records are to be printed. You can use
these trace records to follow the steps through message generation. These records
help determine if messages are being sent as expected, if the proper IF statements
are activated at the time of logic test, when calls and branches are taken, and when
EVENTs are signaled, posted, or reset.

Note: You must specify MSGTRACE=YES for a device, LU, or TP before message
trace records will be written to the log data set during a simulation run. The
Loglist Utility will be unable to print MTRC records if no message trace records
are in the log data set. MTRC records reference the sequence numbers from the
message generation statements. For more information about the MSGTRACE
operand, refer to WSim Script Guide and Reference.

NOMTRC

The NOMTRC command specifies that MTRC records are not to be printed.

NOHDR data type selection command

NOHDR

Chapter 5. Specifying loglist control commands 55

The NOHDR command specifies that “debug blocks,” non-I frames, and records
that contain SNA headers only are not to be listed. Refer to Creating WSim Scripts
for information about creating log records for SNA devices.

NTWRK overall selection command

NTWRK network,...
N network,...

The NTWRK command specifies the network names for which this RUN applies.

If you do not enter the NTWRK command, all networks in the log data set are
listed. If you enter more than one NTWRK command before entering a RUN
command, the names on the last NTWRK command are used.

network,...
Function: The network is the name of the network for which this run applies.
You can enter up to five network names separated by commas.

Format: The value of the network operand is a 1- to 8-character name that
matches the name coded on a WSim network definition NTWRK statement.

P control command

P

The P command specifies that console input is to be terminated, and the Loglist
Utility is to begin reading input statements from the SYSIN data set. If this
command is entered and the SYSIN data set is not open, the Loglist Utility
continues requesting input from the console. The P command is ignored if
encountered in the SYSIN data stream.

RUN control command

RUN

The RUN command specifies that all commands have been entered and that
processing of the log data set should begin. This command is required. After
processing is complete, all variables are reset to their default values before any
more commands are interpreted. If RUN is entered and no other commands have
been entered, the entire log data set is processed.

STRC and NOSTRC data type selection commands

STRC

56 WSim V1R1 Utilities Guide

The STRC command specifies that STRC records are to be printed. You can use
these trace records to follow the execution of STL programs. Refer to WSim Script
Guide and Reference for more information about STL programs.

Note: You must specify STLTRACE=YES for a device, LU, or TP before STL trace
records will be written to the log data set during a simulation run. The Loglist
Utility will be unable to print STRC records if there are not STL trace records in
the log data set. STRC records reference the sequence numbers from the STL
Translator printed output. For more information about the STLTRACE operand,
refer to WSim Script Guide and Reference.

NOSTRC

The NOSTRC command specifies that no STRC records are to be printed.

TCPIP primary resource selection command

TCPIP name

The TCPIP command specifies the name of a TCP/IP connection in the simulation
run for which the listing will be performed.

If any resource selection commands are entered, the listing is limited to the
designated resources (which may include implied secondary resources as well). If
no resource selection commands are entered, all records for all resources are
eligible to be included, provided other types of selection criteria are also met.

name
Function: The name operand specifies the name of the TCP/IP connection.

Format: The value of the name operand is a 1- to 8-character name that
matches the name coded on a TCPIP statement in the WSim network
definition.

TERM secondary resource selection command

TERM name[-num]
T name[-num]

The TERM command specifies the name of the device, logical unit (LU), or
transaction program (TP) for which the listing will be performed.

DEV, TERM, and TP commands can be used interchangeably.

If you want to specify individual secondary resources, you must enter a secondary
resource selection command, such as TERM, for each individual device, LU, or TP
to be listed. If the TERM command does not follow a valid primary resource
selection command, the name specified will be listed for all primary resources. If
the TERM command follows a valid primary resource selection command, the

Chapter 5. Specifying loglist control commands 57

name specified will be listed for that primary resource only. If no TERM or other
secondary resource selection commands are entered following a primary resource
selection command, then all secondary resources for the specified primary resource
are listed.

name
Function: The name operand specifies the name of the device, logical unit (LU),
or transaction program (TP).

Format: The value of the name operand is a 1- to 8-character name that
matches the name coded on a WSim network definition DEV, LU, or TP
statement.

num
Function: The num operand specifies either a single session number for an LU
with multiple session capability or a specific transaction program instance.

Note: If num is not appended to the LU name and multiple sessions exist for
the LU, all of the sessions are considered. If num is not appended to the TP
name and multiple instances of the TP exist, all of the instances are considered.

Format: For an LU, num can be any decimal integer from 1 to 65535. For TP
instances, num can be any decimal integer from 1 to 99999.

TIME overall selection command

TIME {ALL}
{x-y}

wherex can be hhmmss, hhmm, or START
and y can be hhmmss, hhmm, or END

The TIME command specifies the time limits of a simulation run for which the log
listing will be performed. The first field indicates the time at which the analysis is
to begin. The second field indicates the last second to be processed in the run.

Times are 24-hour clock times (000000-235959). A time interval including midnight
is valid, such as TIME 235000-004500. The log data set must contain records
between a time that you specify and the beginning of the next hour.

If you do not enter the TIME command, the entire log data set is processed. If you
enter two TIME commands, the limits from the last one entered are used. If the
last TIME command entered is invalid, TIME ALL is assumed.

Note: Except when using TIME ALL, any format of the first operand field may be
paired with any format of the second operand field (for example, TIME
183000-END).

ALL
Function: The ALL operand specifies that the entire log data set is to be
analyzed.

hhmmss
Function: The hhmmssoperand indicates the hours, minutes, and seconds that
limit the processing. If you enter this time ashhmm, ssdefaults to 00.

58 WSim V1R1 Utilities Guide

START
Function: The START operand indicates that analysis is to begin with the first
record on the log data set.

END
Function: The END operand indicates that analysis is to end with the last
record in the log data set.

TP secondary resource selection command

TP name[-num]

The TP command specifies the name of the CPI-C transaction program instance for
which the listing will be performed.

DEV, TERM, and TP commands can be used interchangeably.

If you want to specify individual secondary resources, you must enter a secondary
resource selection command, such as TP, for each individual transaction program
to be listed. If the TP command follows a valid primary resource selection
command, the TP instance will be formatted for the primary resource only. If the
TP command does not follow a valid primary resource selection command, the
name specified will be listed for all primary resources. If no TP or other secondary
resource selection commands are entered following a primary resource selection
command, then all secondary resources for the specified primary resource are
listed.

name
Function: The name operand specifies the name of the transaction program.

Format:The value of the name operand is a 1- to 8-character name that matches
the name coded on a WSim network definition TP statement.

num
Function: The num operand specifies a single transaction program instance.

Note: If num is not appended to the TP name and multiple instances exist for
the TP, all of the instances are considered.

Format:The value for num can be any decimal integer from 1 to 99999.

UPCASE control command

UPCASE

The UPCASE command specifies that when the EBCDIC translation of hexadecimal
data or formatted log display records is printed, all lowercase characters are
translated to uppercase characters.

Chapter 5. Specifying loglist control commands 59

VERIFY and NOVERIFY data type selection commands

VERIFY [ZONE=(x,y)]
[,HEX={YES|NO}]

The VERIFY command causes VRFY log records to be formatted into Verification
Detail Reports and also causes the Verification Summary Report to be printed at
the end of the Loglist Utility run.

ZONE=(x,y)
Function: The ZONE operand specifies the portion of the description logged
on the VRFY record to be used as a key for accumulating verification statistics
for the Verification Summary Report, where x specifies the location of the
beginning of the zone within each description, and y specifies the length of the
zone. The x and y values are integers from 1 to 50. The sum of x and y must
be less than or equal to 51.

Default: ZONE=(1,50).

HEX={YES|NO}
Function: The HEX operand specifies whether the expected and actual values
for text on Verification Detail Reports should be printed in hexadecimal format.

Format: The HEX operand can have the following values:

YES Causes the text to be printed in hexadecimal format.

NO Causes the text to be printed in EBCDIC notation.

Default: NO.

Code HEX=YES to verify locations in a data stream containing nonprintable
characters (for example, LOC=TH+, RH+). Code HEX=NO (the default) to
verify printable text. Nonprintable characters are translated into periods (.)
when HEX=NO.

When HEX=NO, a maximum of 29 characters of the expected and actual text
will be printed on the Verification Detail Reports. When HEX=YES, a
maximum of 15 characters are translated into hexadecimal format and printed.

NOVERIFY

The NOVERIFY command inhibits the formatting of VRFY log records into
Verification Detail Reports and inhibits the printing of a Verification Summary
Report at the end of the Loglist Utility run.

VTAMAPPL primary resource selection command

VTAMAPPL name
V name

The VTAMAPPL command specifies the name of a VTAMAPPL in the simulation
run for which the listing will be performed.

60 WSim V1R1 Utilities Guide

If any resource selection commands are entered, the listing is limited to the
designated resources (which may include implied secondary resources as well). If
no resource selection commands are entered, all records for all resources are
eligible to be included, provided other types of selection criteria are also met.

name
Function: The name operand specifies the name of the VTAMAPPL.

Format:The value of the name operand is a 1- to 8-character name that matches
the name coded on a VTAMAPPL statement in the WSim network definition.

* control command

* [data]

The * command specifies a comment. This command can contain any data
following the asterisk. The command is listed with the other input commands
before the output reports, but it is ignored during Loglist Utility processing.

data
Function: The data operand can contain any data.

Chapter 5. Specifying loglist control commands 61

62 WSim V1R1 Utilities Guide

Chapter 6. Using the Log Compare Utility to compare log data
sets

The Log Compare Utility enables you to compare the log data set records of panels
displayed on a simulated 3270 terminal during two WSim simulations. If the
records from the first and second simulation differ, the Log Compare Utility
reports the first difference and optionally displays the two screens.

The Log Compare Utility is especially useful when comparing multiple panels. You
can use this utility after you alter an application to see if the information on the
panels changed in ways you did not anticipate. For example, if your automatic
teller machine normally presents a panel showing the user's balance, you may
want to change the panel to display the last three transactions as well. After you
alter the panel, you can use the Log Compare Utility to tell you exactly what
additional information appeared.

Using the Log Compare Utility's control commands, you select the panels to be
compared and the fields to be compared on each panel. In addition, you can obtain
a set of reports that summarize the differences found between the two log data
sets. After comparing the records, the Log Compare Utility lists the commands you
entered and the operand values that were in effect while the utility was running.

The sections in this chapter present information about the following:
v DSPY records—what they are and how the Log Compare Utility uses them
v How to use control commands to compare panels
v How to synchronize two log data sets
v The listings and reports the Log Compare Utility provides
v How to run the Log Compare Utility, including:

– Running the Log Compare Utility from the WSim/ISPF Interface
– Execution parameters to use with JCL or a TSO CLIST
– Examples of JCL and a TSO CLIST for running the Log Compare Utility
– Sample output from an example input command file
– Return codes after running the Log Compare Utility.

Understanding DSPY records
The Log Compare Utility compares 3270 DSPY records. A 3270 DSPY record is a
record type WSim stores in the log data set. The string of information in the DSPY
record describes a panel used during a WSim simulation. You can think of a DSPY
record as a snapshot of a panel WSim sees as it communicates with the system
under test. Each DSPY record in a log data set represents a separate snapshot taken
at a different time during the run. The Log Compare Utility uses the panel
information to make the comparison.

Figure 17 on page 64 shows the output of a DSPY record as it appears when
formatted by the Loglist Utility. For information about the Loglist Utility, see
Chapter 4, “Using the Loglist Utility to format the log data set,” on page 25. The
DSPY record appears in the log data set output with a header and a panel. Notice
that the header identifies the RECORD TYPE as DSPY.

© Copyright IBM Corp. 1985, 2015 63

Each DSPY record can provide the following information:
v The size of the panel
v The data present on the panel
v 3270 field attributes
v 3270 character attributes
v Data about the network resources associated with the device that logged the

DSPY record
v 3270 cursor position.

You specify that WSim creates DSPY records during a simulation by coding the
LOGDSPLY operand on the NTWRK statement or lower-level device statements in
the network definition. After the simulation run, you can run the Log Compare
Utility to compare the DSPY records from two different simulations.

For more information about logging DSPY records with the LOGDSPLY operand
and the values you can use on the operand, refer to WSim Script Guide and
Reference. Refer to WSim User Exits for additional information about DSPY record
formats.

Comparing DSPY records using the Log Compare Utility
When you use the Log Compare Utility to compare two log data sets for a
network, the first log data set, called the MASTER log data set, is the reference
standard against which the second log data set, called the TEST log data set, is
compared. In the reports produced by the Log Compare Utility, you will see the
first log data set identified as MASTER and the second as TEST.

The Log Compare Utility compares records for each device in your simulated
network separately. By using the control commands, you can select particular lines,
terminals, and devices to compare, or you can make comparisons for all devices in

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TYPE MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG DECK DATA NUMBER
USERAPPL APPL2 SECLU-1 14222660 0096001 11000000 DSPY 0200 080040 2294 E2 SECLU 00 2

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| ------------------------ ALLOCATE NEW DATA SET ------------------------------| 1
2| COMMAND ===> | 2
3| | 3
4| DATA SET NAME: WSIM.SAMPLE.DATASET | 4
5| | 5
6| VOLUME SERIAL ===> USERPK (Blank for authorized default volume) * | 6
7| GENERIC UNIT ===> (Generic group name or unit address) * | 7
8| SPACE UNITS ===> BLOCK (BLKS, TRKS, or CYLS) | 8
9| PRIMARY QUANTITY ===> 540 (In above units) | 9
10| SECONDARY QUANTITY ===> 250 (In above units) | 10
11| DIRECTORY BLOCKS ===> 10 (Zero for sequential data set) | 11
12| RECORD FORMAT ===> U | 12
13| RECORD LENGTH ===> 0 | 13
14| BLOCK SIZE ===> 6144 | 14
15| EXPIRATION DATE ===> (YY/MM/DD | 15
16| YY.DDD in Julian form | 16
17| DDDD for retention period in days | 17
18| or blank) | 18
19| | 19
20| (* Only one of these fields can be specified) | 20
21| | 21
22| | 22
23| | 23
24| | 24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(7) COLUMN(29) AID: NULL DISPLAY AID WHEN LOGGED: BEGINNING OF MSG GEN
DIMENSIONS: (24, 80)

Figure 17. Example of a DSPY record as formatted by the Loglist Utility

64 WSim V1R1 Utilities Guide

your network. You can also select particular records and record fields to compare.
Records for each device are numbered sequentially in the log data sets. These
sequential numbers appear in the reports produced by the Log Compare Utility.

To run the Log Compare Utility, follow these steps:
1. Run WSim and log the data to the MASTER log data set.
2. Make changes to the system you are testing, for example:
v Information Management System/Virtual Storage (IMS/VS), Customer

Information Control System/Virtual Storage (CICS/VS), DB2® version
updates, fixes, modifications, or fine tuning

v Application program updates, fixes, or modifications.
3. Test your updated system by running WSim and logging the data to the TEST

log data set.

Note: Be sure to store your MASTER and TEST log data sets with different
names.

4. Run the Log Compare Utility.
5. Verify that the system remains unchanged or evaluate the changes by studying

the output reports. For information about the reports, refer to “Information you
can obtain with the Log Compare Utility” on page 72. For examples of the
reports, refer to “Understanding sample output” on page 79.

Identifying differences in DSPY records
The Log Compare Utility identifies each comparison as “Equal” or “Not Equal”
with a message stating a reason if there is a difference. Two DSPY records are
equal when the two screen images are:
v Completely identical in every respect

The data in each field, as well as all other characteristics, such as location,
attributes of the data, and so forth, is identical.

v Slightly different, but you used commands to tell the Log Compare Utility to
ignore the differences.
For example, you can mask a date field from being compared on two different
log data sets by using the MASK command. Also, you can exclude records from
comparison by identifying a unique string of data in them with the EXCLUDE
command.

Two DSPY records are not equal for any one of many reasons, including when the
two screen images display:
v Differences in data
v The same data, but not in the same location
v Different field or character attributes

When you specify the ATTRIBUTE command, the Log Compare Utility identifies
attribute as well as data differences.

v Different screen image sizes
v Different cursor positions
v Different screen images because one was logged at the beginning of message

generation for a panel and the other was logged after completing message
generation for the panel.
See Creating WSim Scripts for an explanation of the message generation process.

When the Log Compare Utility finds a difference between panels, it reports the
difference in the Compare Report, the Differences Report, and the Summary

Chapter 6. Using the Log Compare Utility to compare log data sets 65

Report. Refer to “Information you can obtain with the Log Compare Utility” on
page 72 for information about the reports and “Understanding sample output” on
page 79 for examples of reports.

Comparing DSPY records in networks with multiple devices
The Log Compare Utility compares DSPY records (in the MASTER and TEST log
data sets) with different or identical device names. Panels for each device are
numbered sequentially for the individual device, so if each has five panels, both
devices' panels are numbered 0 through 4. If the MASTER and TEST log data sets
contain eight different devices in the network for the simulation run, the utility
compares each device for which you request comparisons separately.

The Log Compare Utility stops comparing panels for any particular terminal when
the total number of panels that have a difference exceeds the threshold amount
specified on the ERRCOUNT ABORT=integer command. However, the Log
Compare Utility continues to compare panels for other terminals. Often, a large
number of panels are not equal because the two log data sets are not synchronized
when the Log Compare Utility compares them. Refer to “Synchronizing two log
data sets” on page 70 for information about the ERRCOUNT command and
synchronizing the log data sets.

For more information about comparing multiple devices in log data sets, refer to
Chapter 7, “Specifying Log Compare Utility control commands,” on page 91.

Controlling what is compared
You can control how the Log Compare Utility compares panels by using control
commands. Control commands manage the selection of records and how records
are processed when they are compared. The Log Compare Utility uses two types of
commands:
v Selection
v Process.

Understanding selection commands
Selection commands limit the scope of the comparing process and make it more
manageable or meaningful. By using selection commands, you identify only the
DSPY records you want to compare and allow the Log Compare Utility to ignore
the rest.

In addition, you can use selection commands like DEV, LU, or TERM to identify
DSPY records for particular devices for which you want to compare simulation
runs. For example, although your MASTER and TEST log data sets may each
contain DSPY records for DEV1 through DEV100, you may want to compare the
DSPY records for only DEV49. In this case, you can code the DEV command as
follows:
DEV DEV49

You may also want to compare the DSPY records for MASTER DEV50 to TEST
DEV51. In this case, you can code the DEV command as follows:
DEV DEV50,DEV51

66 WSim V1R1 Utilities Guide

The Log Compare Utility compares only the MASTER and TEST DSPY records
requested. If you code several DEV, LU, or TERM selection commands, the Log
Compare Utility compares the MASTER DSPY records for each device to its
associated TEST DSPY records.

When you code the VTAMAPPL, TCPIP and NTWRK selection commands, the Log
Compare Utility compares a range of network resources. For example, a
VTAMAPPL may have several logical units with it, so that when you code:
VTAMAPPL VAPPL1

the Log Compare Utility compares all logical units associated with VAPPL1. With
this coding, the Log Compare Utility extracts only those DSPY records that have
VAPPL1, and then compares those records.

If you want to compare the DSPY records for MASTER VAPPL1 to TEST VAPPL2,
you can code the VTAMAPPL command as follows:
VTAMAPPL VAPPL1,VAPPL2

This causes the Log Compare Utility to extract only those DSPY records from the
MASTER log data set having VTAMAPPL VAPPL1, and to extract only those DSPY
records from the TEST log data set having VTAMAPPL VAPPL2. The Log Compare
Utility will then compare those records.

If no VTAMAPPL is specified, the Log Compare Utility extracts those DSPY
records matching the logical units specified regardless of the VTAMAPPL.

The MSGTXT selection command provides another way to limit the records that
the Log Compare Utility compares. When you specify the MSGTXT command, the
Log Compare Utility considers only the DSPY records that were logged while
WSim was processing the named message generation deck. Here again, more than
one device can be represented in the resulting DSPY records, so the utility
compares the MASTER DSPY records that fit the MSGTXT criteria against the
TEST DSPY records that fit the MSGTXT criteria for the individual devices being
compared.

The EXCLUDE and SELECT commands limit what is compared either by
excluding certain records from consideration or by specifically selecting them for
consideration. When you define a string of data on the EXCLUDE command, the
Log Compare Utility bypasses any DSPY records with a matching string of data.
For example, when an application under test has several levels of menus that you
do not want to compare, you can define a data string of “menu” on EXCLUDE.
Then the Log Compare Utility would exclude any DSPY records containing
“menu” from the comparing process. When you are interested only in comparing a
single panel, you can code a single SELECT command to define the panel. Then
the Log Compare Utility compares only that panel during the comparing process.

The Log Compare Utility also excludes DSPY records produced as a result of the
CLEAR command simulating use of the Clear key at a terminal.

The START command defines the panel that is the starting point for the comparing
process. For example, the application under test can have several panels of logon
and password information that occur before the first panel you are interested in
comparing. When you identify that panel by defining a unique data string on the
START command, the Log Compare Utility searches for that panel in both the
MASTER and TEST log data sets. When the utility locates that panel, it begins the
comparing process.

Chapter 6. Using the Log Compare Utility to compare log data sets 67

The SYNCPOINT command enables you to define the DSPY record that the utility
uses to synchronize the comparison of two log data sets. The ERRCOUNT
command enables you to abort or synchronize the comparison after a specific
number of mismatches. With the ABORT operand on the ERRCOUNT command,
you can specify the number of differences that can be detected for a device before
the utility ends the comparing process. When you code the SYNCPOINT operand
on the ERRCOUNT command, you specify the number of differences that can be
detected for a device before the utility attempts to synchronize the log data sets.

Note: The compare process for devices is completely separate. If you have two
devices in your MASTER and TEST log data sets that are not being compared to
each other, the Log Compare Utility can abort processing for one device without
aborting processing for the other device.

For additional information about synchronization, refer to “Synchronizing two log
data sets” on page 70. Refer to “Specifying synchronization with selection
commands” on page 70 for more information about using the SYNCPOINT and
ERRCOUNT commands.

Understanding process commands
Process commands tell the utility how to process the selected records by specifying
the following information:
v What fields to compare
v What fields not to compare
v When to compare the fields
v The reports that the utility is to generate following the run.

When you code the ATTRIBUTE and CHARATTR commands, for example, the Log
Compare Utility includes any 3270 data stream attributes in the comparing process.
The ATTRIBUTE command specifies that field attributes are to be considered; the
CHARATTR command specifies that character attributes are to be considered.
Without the ATTRIBUTE command, a field that appears in blinking red would be
considered identical to one that appears in reverse video blue, assuming that the
contents of the field are also identical. With the ATTRIBUTE command, however,
the utility looks at the attributes that define the field and compares them as well.
Because blinking red is not equal to reverse video blue, the utility reports that a
difference exists.

The CURSOR command specifies that the Log Compare Utility compares the
position of the cursor on two records. A difference in cursor positions is considered
to be a mismatch.

The CHECKONLY and MASK commands limit the fields that the Log Compare
Utility compares on a panel. The CHECKONLY command specifies that the Log
Compare Utility consider only certain fields during the comparing process; the
MASK command specifies that the utility not consider certain fields during the
comparing process. These commands have operands that specify the location of
specific records and an operand that defines the area of the panel to be considered
during the comparing process:
v The DATA, LOC, and SCAN operands specify the location of data to use to

identify a specific record when coded on either the CHECKONLY or MASK
command.

v The CHECKLOC operand defines an area of the panel to be considered when
you code the CHECKONLY command.

68 WSim V1R1 Utilities Guide

v The MASKLOC operand defines an area of the panel to be ignored when you
code the MASK command.

The following examples clarify how you can use these operands and commands to
control the comparing process:

CHECKONLY
If you have DSPY records from two different simulations with many
differences between the panels, you may only be interested in the
differences that appear between specific fields, for example, the price field
and the part number field. By coding a CHECKONLY command with two
CHECKLOC operands, you can specify that the utility compares only those
two fields and ignores all other fields. During the comparing process, the
Log Compare Utility selects the DSPY records defined by the selection
commands, and then uses the DATA, LOC, and SCAN operands to identify
the record defined by the CHECKONLY command. Then, using the two
CHECKLOC operands that you coded, the utility looks at only the price
field and the part number field to complete the comparing process.

MASK
If you have DSPY records that you think are identical except for a few
fields, you can code the MASK command to compare every field except
those that may have changed. For example, if you have two panels logged
within a few hours of one another, the only difference between them might
be the field that records the time that the simulation took place. By
defining that field with the MASK command, the Log Compare Utility
ignores that field during the comparing process. If the rest of the panel is
identical, the utility considers the entire panel identical, despite the
difference that appears between the time fields.

Table 3 and Table 4 group similar Log Compare Utility commands to help you find
the command you need. Commands are grouped to show the levels under which
the compare is controlled. These tables list commands from top to bottom, showing
from a wide scope of control to a detailed, narrow scope of control.

Table 3. Log Compare Utility selection commands

Command Type Command Description

Resource-Level
Selection
Commands

NTWRK
VTAMAPPL, TCPIP
DEV, LU, TERM
MSGTXT

These commands are used to select
resources to compare.

Screen-Level
Selection
Commands

START
EXCLUDE, SELECT

These commands are used to
specify which display records to
compare.

Screen-Level
Error-Recovery
Commands

ERRCOUNT, SYNCPOINT These commands select and discard
display records in error recovery
situations.

Table 4. Log Compare Utility process commands

Command Type Command Description

Partial Screen Compare
Commands

CHECKONLY
MASK

These commands are used to
limit the display record
comparison to portions of the
record.

Chapter 6. Using the Log Compare Utility to compare log data sets 69

Table 4. Log Compare Utility process commands (continued)

Command Type Command Description

Compare Commands ATTRIBUTE, CHARATTR,
CURSOR, UPPERCASE

These commands control how
the display records are to be
compared.

General Control Commands END, HEADER, P,
REPORT, RUN

These commands control the
Log Compare Utility and its
output.

Synchronizing two log data sets
When the Log Compare Utility detects successive data differences between DSPY
records, you can recover and continue to compare the log data sets from a known
point.

Data differences may occur between panels because the utility attempted to
compare two completely different panels. For example, WSim may log a
quantity-on-hand panel as the fifth panel during a simulation performed on
Monday. If you then add a new security panel on Tuesday, another simulation
performed on Wednesday would log the quantity-on-hand panel as the sixth panel.
When the Log Compare Utility compares the fifth panel from Monday's simulation
with the fifth panel from Wednesday's simulation, they are entirely different
panels.

Although adding a single panel may not seem to be a crucial change, the DSPY
records in each pair of panels that follows will fail to compare appropriately. In the
preceding example, the panels logged to the MASTER log data set from Monday's
simulation and the TEST log data set from Wednesday's simulation are out of
sequence by one panel from the point at which you added the new panel. Without
the ability to synchronize the two log data sets, running the Log Compare Utility
would show significant differences between the two tests, when, in fact, the only
difference is that you added one panel.

To recover synchronization when the utility detects a difference in data fields or
panels, you establish a “known point” from which the comparing process can be
restarted. For example, the utility can return to a primary option menu and then
begin comparing panels again. The primary option menu would act as a known
point for the Log Compare Utility to restart the comparing process after it became
out of sequence.

In effect, the Log Compare Utility says, “I've run into a series of consecutive
mismatches, so I'm going to skip ahead to the known point, the primary option
menu, and start comparing again.” If the new panel was the only difference
between the two tests, then every panel following the known point compares
successfully.

Specifying synchronization with selection commands
You can use the SYNCPOINT and ERRCOUNT selection commands to tell the
utility when and how to synchronize the log data sets.

The SYNCPOINT operand on the ERRCOUNT command tells the Log Compare
Utility how many consecutive mismatches can occur before the comparison is to be
considered out of synchronization. After reaching that number of mismatches, the
process stops until the utility finds the record identified by a SYNCPOINT

70 WSim V1R1 Utilities Guide

command in both log data sets. The utility first searches the MASTER log data set,
record by record, for a DSPY record that matches the SYNCPOINT definition.
When the utility finds a match, it searches the TEST log data set, record by record,
for a DSPY record that matches the same SYNCPOINT definition. The comparing
process then resumes from that point.

Note: You can code more than one SYNCPOINT command for each run. When
you code more than one, the first one that produces a match is used.

For more information about the ERRCOUNT and SYNCPOINT commands, refer to
“Selection commands” on page 92.

Example of log data set synchronization
Figure 18 on page 72 shows how WSim recovers when successive differences are
detected between data fields. In this example, each panel contains a field
displaying a single letter that identifies the panel. The following selection
commands and operands were specified to run the Log Compare Utility:
ERRCOUNT SYNCPOINT=2
SYNCPOINT DATA=(E),

LOC=(1,1),
SCAN=YES

The operands specify that two consecutive mismatches must occur before the
comparison is out of synchronization. The Log Compare Utility then attempts to
get back into synchronization by searching DSPY records. The utility starts at
location (1,1) and scans to the end of each record for the data E. When the Log
Compare Utility finds both a MASTER panel and a TEST panel with E, it begins
comparing panels again from this point of synchronization.

Chapter 6. Using the Log Compare Utility to compare log data sets 71

Information you can obtain with the Log Compare Utility
With the Log Compare Utility, you can obtain several reports that describe the
differences detected between the MASTER and TEST DSPY records:
v Active Command List
v Complete Records List
v Compare List
v Differences Report

Comparison MASTER Log TEST Log Description of the
Sequence Data Set Data Set Comparing Process

┌────────┐ ┌────────┐
0 │ │ │ │ The Log Compare Utility compares the first DSPY

│ A │─────────
│ A │ records, which are identical.
│ │ (equal) │ │
└────────┘ └────────┘

┌────────┐ ┌────────┐
1 │ │ │ │ The Log Compare Utility compares the next two

│ B │────┼────
│ A │ DSPY records. They are not identical.
│ │ (not │ │
└────────┘ equal) └────────┘

┌────────┐ ┌────────┐
2 │ │ │ │ The Log Compare Utility compares the next two

│ C │────┼────
│ B │ panels. Again, they are not identical. Because
│ │ (not │ │ SYNCPOINT=2 and two consecutive unequal panels
└────────┘ equal) └────────┘ have been detected, the Log Compare Utility

attempts to synchronize the comparing process.

┌────────┐ ┌────────┐
3 │ │ │ │ The utility searches the MASTER log data set

│ D │────┼────
│ C │ and then the TEST log data set for the matching
│ │ (not │ │ SYNCPOINT specification: (DATA=E).
└────────┘ used) └────────┘

┌────────┐ ┌────────┐
4 │ │ │ │

│ E │────┐ │ D │
│ │ │ │ │
└────────┘ │ └────────┘

│
(equal) │

│
┌────────┐ │ ┌────────┐

5 │ │ └────
│ │ The matching SYNCPOINT is found at sequence #4
│ F │ │ E │ in the MASTER log data set and at sequence #5
│ │────┐ │ │ in the TEST log data set.
└────────┘ │ └────────┘

│
(equal) │

│
┌────────┐ │ ┌────────┐

6 │ │ │ │ │ Comparisons continue after synchronization is
│ G │ └────
│ F │ successful.
│ │ │ │
└────────┘ └────────┘

Figure 18. The synchronizing process with panel E specified as the SYNCPOINT

72 WSim V1R1 Utilities Guide

v Summary Report.

The Log Compare Utility prints the Active Command List automatically following
each run. You control printing of all other reports except the Active Command List
by using the REPORT command.
v If you issue the REPORT command without any operands, you will obtain an

Active Command List, a Differences Report, and a Summary Report by default.
v If you code the RECORDS, COMPARES, DIFFERENCES, or SUMMARY

operands on the REPORT command, the report named by the operand will be
printed.

v If you do not specify the REPORT command, you will obtain an Active
Command List, a Differences Report, and a Summary Report by default.

The following sections provide detailed information about each report. To see
examples of each of the reports, refer to “Understanding sample output” on page
79.

Active Command List
The Log Compare Utility prints the Active Command List automatically following
each run, listing the commands you issued and the operand values that were in
effect during the run. An example of this report is shown in Figure 20 on page 81.
The report is divided into two major sections: Selection Commands Issued and
Process Commands Issued. In addition, these two categories are subdivided into
three columns that provide detailed information about each command:
v Command Number
v Command Type
v Operands.

The Log Compare Utility assigns sequential numbers that appear in the Command
Number column to each instance of the EXCLUDE, SELECT, START, SYNCPOINT,
CHECKONLY, and MASK commands. Each command has its own sequence. Since
you can enter each of these commands more than once, you can use these
command numbers to determine exactly which command created the results you
see on the report. The numbers for these commands also appear in the Complete
Records Report, the Compare List Report, and the Summary Report.

The Command Type column lists the name of each command; the Operands
column lists the operands and operand defaults associated with each command.
When you code commands or operands with single character abbreviations, these
columns show the exact commands and operands that were used by the Log
Compare Utility.

For more information about coding control commands with single character
abbreviations, refer to “Coding the control commands” on page 91.

Complete Records List
When you request the Complete Records List with the REPORT control command,
the Log Compare Utility prints one report for each device being compared. An
example of this report is shown in Figure 21 on page 81. The report lists every
DSPY record in the log data set by log sequence number and indicates whether the
record was used in the comparing process. If a record was not used in the process,
an explanation is also included.

Chapter 6. Using the Log Compare Utility to compare log data sets 73

This report provides two major sections, MASTER Records and TEST Records,
which are divided into four columns that provide detailed information about each
record:
v Sequence Number
v MSGTXT
v Usage
v Reason.

During the simulation, WSim assigns sequential numbers, by device, to each DSPY
record it creates. The Sequence Number column provides a list of each DSPY
record and its assigned number. The utility uses the sequence numbers on each
report, except the Active Command List, to identify a particular DSPY record.

The MSGTXT column lists the name of the message generation deck being
processed when WSim logged the DSPY record. You can refer to this column when
you debug a simulation and need to know where the DSPY records originated.

The Usage column lists whether the Log Compare Utility used the DSPY record
during the comparing process. If the column specifies USED, the DSPY record was
compared. If the column specifies NOT USED, the record was not compared.

In the Reason column, the Log Compare Utility provides an explanation about
why certain DSPY records were or were not used in the compare process. This
column might indicate that a SELECT command chose a record for comparison, for
example, or that a specific record was selected during synchronization because it
met the criteria established by a SYNCPOINT command.

When the Log Compare Utility does not use a record, the Usage column indicates
that an EXCLUDE command excluded a record from the comparing process. In
some cases, however, no explanation is provided. When the comparing process is
aborted, for example, the Complete Records List places a message stating RUN
ABORTED AT THIS TIME DUE TO NUMBER OF ERRORS after the last record
used. This message supplies an explanation for all following records, showing
NOT USED in the Usage column and no additional explanation in the Reason
column.

To receive the Complete Records List following a run, specify the REPORT
command with the RECORDS operand. Refer to “REPORT command” on page 105
for information about the REPORT command.

Compare List
When you request the Compare List, the Log Compare Utility prints a separate
report for each device being compared. An example of this report is shown in
Figure 22 on page 82. Each report matches the sequence numbers of DSPY records
from the MASTER log data set against DSPY records from the TEST log data set
and describes the results of the comparing process.

Each report contains the following columns of information:
v MASTER Sequence Number
v TEST Sequence Number
v Checkonly
v Mask
v All Mask

74 WSim V1R1 Utilities Guide

v Result
v Reason for Difference.

The MASTER Sequence Number and the TEST Sequence Number columns
identify the sequence numbers of the MASTER and TEST DSPY records used for
an individual comparison. However, the sequence number listed for the TEST
DSPY record may not always be the same as the MASTER record's number.
Following synchronization, for example, the Log Compare Utility may resume the
comparing process using a MASTER DSPY Record with sequence number 20 and a
TEST DSPY record with sequence number 44.

The Checkonly column indicates which CHECKONLY command, if any, was used
for this individual comparison. The number that appears in this column is identical
to the number listed in the Command Number column of the Active Command
List. For more information about the Active Command List, refer to “Active
Command List” on page 73.

The Mask column indicates which MASK command, if any, was used for this
individual comparison. Like the number listed in the Checkonly column, the
number appearing in the Mask column is identical to the number listed in the
Command Number column on the Active Command List.

If you code a Mask command with only the MASKLOC operand, the utility masks
every panel used at the specified location. This is called an all mask operation.
When you specify “all mask,” an asterisk (*) appears in the All Mask column. For
more information about the MASKLOC operand, refer to “MASK command” on
page 103.

When the Log Compare Utility compares two DSPY records, one of two possible
results are listed in the Result column: EQUAL or NOT EQUAL. EQUAL indicates
that the utility found the two DSPY records to be identical relative to how you
coded the commands. NOT EQUAL, however, means that some difference was
detected between the records. Whenever NOT EQUAL appears, the utility provides
an explanation of the difference between the two records in the Reason for
Difference column.

The Reason for Difference column describes a comparison that resulted in a NOT
EQUAL message in the Result column. Although the most commonly occurring
reason for a difference can be DATA DIFFERENCE DETECTED, other reasons may
include messages for unequal panel size or an attribute difference. When the
Compare List shows that a data or attribute difference existed between two
records, you can obtain additional information from the Differences Report, as
discussed in the following section.

To receive the Compare List following a run, specify the REPORT command with
the COMPARES operand. Refer to “REPORT command” on page 105 for
information about the REPORT command.

Differences Report
The Log Compare Utility prints a Differences Report for the first occurrence of a
difference between DSPY records. An example of this report is shown in Figure 24
on page 84. If the records were unequal because of a difference in data or cursor
position, the utility prints a screen image for each of the MASTER and TEST
records. If the records were unequal because of a difference in attributes, the utility

Chapter 6. Using the Log Compare Utility to compare log data sets 75

prints the attribute values and a description of the difference in a table. If no
difference is found, the Log Compare Utility prints a Differences Report indicating
no differences.

The header provided on the Differences Report lists the sequence number for both
the MASTER and TEST DSPY records and provides the row and column panel
location of the difference.

You can obtain a Differences Report in either of the following two ways:
v Do not specify the REPORT command
v Specify the REPORT command with the DIFFERENCES operand.

Refer to “REPORT command” on page 105 for information about the REPORT
command.

Summary Report
The Summary Report lists the overall results of the run by device, including the
following information:
v The number of MASTER and TEST DSPY records processed
v The number of records compared
v The number of differences detected during the run
v Whether the utility attempted to synchronize records
v Whether the utility aborted the run before completion
v Whether synchronization was attempted.

If the Log Compare Utility attempted to synchronize the two log data sets, the
Summary Report also lists the SYNCPOINT command used and the sequence
number for the MASTER and TEST DSPY records. An example of this report is
shown in Figure 27 on page 89.

You can obtain a Summary Report in either of the following two ways:
v Do not specify the REPORT command
v Specify the REPORT command with the SUMMARY operand.

Refer to “REPORT command” on page 105 for information about the REPORT
command.

Running the Log Compare Utility
The Log Compare Utility requires information about how you want the MASTER
and TEST DSPY records compared. You supply this information to the utility with
control commands, which you can provide in an input file or enter from the
console, and with the JCL or TSO CLIST statements you use to run the utility.
These statements provide the utility with the following locations:
v MASTER log data set
v TEST log data set
v Command input file
v Log Compare Utility program
v The printer

The following sections describe more information about the Log Compare Utility:
v Running the Log Compare Utility using the WSim/ISPF Interface
v Execution parameters

76 WSim V1R1 Utilities Guide

v Examples of JCL and a TSO CLIST
v Output generated by a sample control command file.

Using the WSim/ISPF Interface
You can run the Log Compare Utility from the WSim/ISPF Interface. To do this,
follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 9 from the WSim/ISPF Interface main panel and press Enter. The
Compare Logged Display Data panel is displayed.

Note: You can also type “COMPARE” on the command line and press Enter to
display this panel.

3. Fill in the appropriate information for this panel and press Enter to run the Log
Compare Utility.

For more information on the WSim/ISPF Interface, see Chapter 2, “Running WSim
with the WSim/ISPF Interface,” on page 5.

Using Log Compare Utility execution parameters
You can enter the following execution parameters, which are optional, in the
PARM field for the JCL EXEC statement or the TSO CLIST statement when you
run the Log Compare Utility.

CONSOLE
Specifies that the utility issue a WTOR for the input control commands. If you
do not specify CONSOLE, the utility reads the control commands from the
SYSIN data set.

PRMODE=(LINE|SOSI1|SOSI2)
Indicates the type of system printer support available. When printing DBCS
data in 3270 log display records, specifying PRMODE indicates whether the
system printer leaves a space when an SO or SI character is encountered. DBCS
data in console records is printed as-is.

You can specify the following values for PRMODE:

LINE Indicates that the system printer cannot print DBCS data. This is the
default value.

SOSI1 Indicates that the system printer leaves a space when an SO or SI
character is encountered. When you specify PRMODE=SOSI1, extra
blank characters are not inserted into print records containing DBCS
data delimited by SO and SI characters.

SOSI2 Indicates that the system printer does not leave a space when an SO or
SI character is printed. When you specify PRMODE=SOSI2, extra blank
characters are inserted into print records containing DBCS data
delimited by SO and SI characters. These blanks maintain the character
spacing of simulated 3270 devices that display SO and SI characters as
blanks.

You must specify PRMODE=SOSI1 or PRMODE=SOSI2 to print DBCS data. If
you specify PRMODE=LINE, or do not specify PRMODE, DBCS data in 3270

Chapter 6. Using the Log Compare Utility to compare log data sets 77

|

log display records is formatted as SBCS data. This allows screen images
containing DBCS data to be printed on a non-DBCS printer.

PRTLNCNT=integer
Specifies the maximum number of lines that the utility prints on a page of
output before ejecting to a new page. integer can be a value from 35 to 255; the
default value is 60.

ROUTCDE=(n,n...)
Specifies the message routing codes that the utility uses in writing Log
Compare Utility messages to the operator. Each n is a system routing code that
defines a console destination for every WTO and WTOR written by the Log
Compare Utility. The value for n is an integer from 1 to 16; the default value is
8.

Data set requirements
The following data sets are required to run the Log Compare Utility.

Data Set Function

STEPLIB DD Defines the data set containing the WSim host processor modules.

SYSPRINT DD Defines the output printer. SYSPRINT records may be either fixed or
variable length. For fixed length records, logical record lengths of 133 to
256 are accepted. For variable length records, logical record lengths of 137
to 260 are accepted. In either case, the maximum length of noncontrol
printed data is 255 bytes. The default is fixed 133 byte length with
blocking supported.

Record lengths larger than 133 are utilized when PRMODE=SOSI1 or
PRMODE=SOSI2 is specified. A larger record length allows additional
DBCS data to be printed when the formatted 3270 log display images are
printed.

SYSIN DD Defines the control command input file.

MASTLDS DD Specifies the name of the MASTER log data set.

TESTLDS DD Specifies the name of the TEST log data set.

Using JCL
The example below shows the JCL you can use to run the Log Compare Utility on
MVS.
//**
//* Log Compare Utility JCL *
//* *
//* The following example illustrates the JCL you can use to run the *
//* Compare Utility in an MVS environment. *
//* *
//**
//COMPJOB JOB Names the JCL job stream.
//ITPCOMP EXEC PGM=ITPCOMP,REGION=4096K, Specifies the program name.
// PARM=’PRTLNCNT=60’
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR Defines the data set that
//* contains the WSim host
//* processor modules.
//SYSPRINT DD SYSOUT=A Defines the printer output.
//MASTLDS DD DSN=COMPARE.MASTER,DISP=SHR Defines the MASTER log data set.
//TESTLDS DD DSN=COMPARE.TEST,DISP=SHR Defines the TEST log data set.
//SYSIN DD *

RUN
END

/*

78 WSim V1R1 Utilities Guide

Using a TSO CLIST
The following shows an example of a TSO CLIST to run the Log Compare Utility
under TSO.
/**
/* Log Compare Utility TSO CLIST *
/* The following example illustrates a TSO CLIST you can use *
/* the Log Compare Utility. *
/**
FREE DDNAME(SYSPRINT SYSIN MASTLDS TESTLDS)
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(SYSIN) DATASET(’COMPARE.SYSIN’) SHR
ALLOC DDNAME(MASTLDS) DATASET(’COMPARE.MASTER’) SHR
ALLOC DDNAME(TESTLDS) DATASET(’COMPARE.TEST’) SHR
CALL ’WSIM.SITPLOAD(ITPCOMP)’ ’PRTLNCNT=60’
FREE DDNAME(SYSPRINT SYSIN MASTLDS TESTLDS)

Understanding sample output
The following pages contain some examples of the reports created when you use
the WSim/ISPF Interface, JCL or a TSO CLIST to run the Log Compare Utility with
the input command file shown in Figure 19. Figure 20 on page 81 through
Figure 27 on page 89 show examples of the output.

The Log Compare Utility uses two types of control commands: process and
selection. Refer to Chapter 7, “Specifying Log Compare Utility control commands,”
on page 91 for information about the two types of commands.

The following five commands are the selection commands used in Figure 19:

NTWRK SAMPNET
Limits the compare process to devices under the network SAMPNET only.

VTAMAPPL WSIM1,WSIM2
Limits the compare process to devices under the VTAM application WSIM1
in the MASTER log data set and VTAM application WSIM2 in the TEST
log data set.

LU VAPPL13,VAPPL23
Limits the compare process to the logical unit VAPPL13 in the MASTER
log data set and logical unit VAPPL23 in the TEST log data set.

NTWRK SAMPNET
VTAMAPPL WSIM1,WSIM2
LU VAPPL13,VAPPL23
START DATA=(Logon),

LOC=(2,1),
SCAN=80

MASK MASKLOC=(4,41,4)
EXCLUDE DATA=(Set A),

LOC=(1,76)
CHECKONLY DATA=(Logon),

SCAN=YES,
CHECKLOC=(1,76,5)

ATTRIBUTE
CHARATTR
CURSOR
REPORT R,S,C,D
RUN

Figure 19. Control commands to specify Log Compare Utility output

Chapter 6. Using the Log Compare Utility to compare log data sets 79

START DATA=(Logon),LOC=(2,1),SCAN=80
Describes the screen on which the utility should begin the comparison
process. In this example, the utility finds the first DSPY record in the
MASTER and TEST log data sets that contains the word “Logon”,
beginning the search on row 2 column 1 and searching the next 80
characters.

EXCLUDE DATA=(Set A),LOC=(1,76)
In this example there are two different sets of screens: Set A and Set B. All
screens are marked either Set A or Set B in row 1, column 76. In this case,
all of the DSPY records for Set A will be excluded from the comparison.

The following six commands are the selection commands used in Figure 19 on
page 79:

MASK MASKLOC=(4,41,4)
This is what is known as an ALL MASK because the DATA option is not
coded. As a result, this MASK applies to ALL DSPY records. In this case,
the utility ignores 4 characters of data starting in row 4 column 41. The
MASK statement is often used to mask time stamps.

CHECKONLY DATA=(Logon),SCAN=YES,CHECKLOC=(1,76,5)
This command tells the utility that for certain screens, only one field is to
be compared, not the whole screen. In this case, on all screens that contain
the word “Logon”, the utility compares only the field located in row 1
column 76 for 5 characters.

Note: You can code several CHECKLOC options for one CHECKONLY
statement.

ATTRIBUTE
This specifies that attributes are to be compared.

CHARATTR
This specifies that character attributes are to be compared.

CURSOR
This specifies that the cursor position is to be compared.

REPORT
This specifies that all four reports are to be run (Records, Compares,
Differences, Summary).

These reports are discussed in the following sections.

Active Command List
Figure 20 on page 81 shows an example of the Active Commands List, which
prints automatically when you run the Log Compare Utility. This list shows which
commands were active for the results printed in the other Log Compare Utility
reports. The list is divided into two major groups: selection commands and process
commands. Refer to Chapter 7, “Specifying Log Compare Utility control
commands,” on page 91 for information about the two types of commands.

80 WSim V1R1 Utilities Guide

Complete Records List
The Log Compare Utility Complete Records List has two lists: one for the
MASTER and one for the TEST log data set. Figure 21 shows the panels, identified
by their sequence numbers, that the Log Compare Utility compared for an example
simulation.

Compare List
Figure 22 on page 82 is an example of the Log Compare Utility Compare List. It
shows the comparison of DSPY records from only those panels used, including
sequence numbers 0, 2, 5, 6, 7, and 10. The Checkonly column shows that
CHECKONLY statement number one was used on panel zero. The ALL Mask
column shows that an ALL Mask was applied to the rest of the panels. (Refer to
Figure 20 to see a listing of the process commands issued.) The Result column

--
Active Command List

--
Selection Commands Issued

Command Command
Number Type Operands

------- ----------- --
NTWRK SAMPNET
VTAMAPPL WSIM1,WSIM2
LU VAPPL13,VAPPL23

1 START DATA=(Logon),
LOC=(2,1),
SCAN=80

1 EXCLUDE DATA=(Set A),
LOC=(1,76),
SCAN=1

Process Commands Issued

Command Command
Number Type Operands

------- ----------- --
ATTRIBUTE
CHARATTR

1 CHECKONLY DATA=(Logon),
LOC=(1,1),
SCAN=32767,
CHECKLOC=(1,76,5)

CURSOR
ALL MASK MASKLOC=(4,41,4)

REPORT RECORDS,COMPARES,DIFFERENCES,SUMMARY

Figure 20. Example of an active command list

--
Complete Records List

Master: NETWORK SAMPNET Test: NETWORK SAMPNET
VTAMAPPL WSIM1 VTAMAPPL WSIM2
DEV/LU VAPPL13-00001 DEV/LU VAPPL23-00001

--
MASTER Records

Sequence
Number MSGTXT Usage Reason

-------- ---------- ---------- ---
0 SLU3 Used Met START command; met CHECKONLY #1
1 SLU3 Not Used Met EXCLUDE #1
2 SLU3 Used Met ALL MASK
3 SLU3 Not Used Met EXCLUDE #1
4 SLU3 Not Used Met EXCLUDE #1
5 SLU3 Used Met ALL MASK
6 SLU3 Used Met ALL MASK
7 SLU3 Used Met ALL MASK
8 SLU3 Not Used Met EXCLUDE #1
9 SLU3 Not Used Met EXCLUDE #1

10 SLU3 Used Met ALL MASK
TEST Records

Sequence
Number MSGTXT Usage Reason

-------- ---------- ---------- ---
0 SLU Used Met START command; met CHECKONLY #1
1 SLU Not Used Met EXCLUDE #1
2 SLU Used Met ALL MASK
3 SLU Not Used Met EXCLUDE #1
4 SLU Not Used Met EXCLUDE #1
5 SLU Used Met ALL MASK
6 SLU Used Met ALL MASK
7 SLU Used Met ALL MASK
8 SLU Not Used Met EXCLUDE #1
9 SLU Not Used Met EXCLUDE #1

10 SLU Used Met ALL MASK

Figure 21. Example of a complete records list (MASTER and TEST)

Chapter 6. Using the Log Compare Utility to compare log data sets 81

shows the comparison of five panels were not equal and shows the reason for
those differences.

Differences Report
The Log Compare Utility Differences Report describes in detail the differences
detected between the DSPY records found in the MASTER and TEST log data sets.
Figure 23 shows an example of a Differences report produced when a base or
character attribute difference exists between the MASTER DSPY record and the
TEST DSPY record. In this particular example, the character attribute difference
was between REVERSE VIDEO in the MASTER DSPY record and UNDERLINED
in the TEST DSPY record. Also, a base attribute difference exists. The MASTER
DSPY record contains a value of X'F8' and the TEST DSPY record contains a value
of X'F4'. In other words, the MASTER DSPY record has high intensity defined and
the TEST DSPY record does not have high intensity defined. Only the first
difference identified on a panel is listed in the report. The locations of other
differences, if any, are not noted by row and column in the report.

The Differences Reports for data and cursor position differences have two parts:
the formatted screen image of the MASTER DSPY record and the formatted screen
image of the TEST DSPY record. Figure 24 on page 84 shows the Differences
Report for the MASTER DSPY and TEST DSPY records detecting upper and
lowercase differences. The location of the first difference detected is printed in the
upper right corner of both parts of the report. In the following example, the
difference is located at (15,46), where the MASTER DSPY record contains an “a”
(lowercase) and the TEST DSPY record contains an “A” (uppercase). Only the first
difference identified on a panel is listed in the report. The locations of other
differences, if any, are not noted by row and column in the report.

The example shows the report with data differences on only one panel. If 50 panels
were different, this report would be considerably longer. Figure 25 on page 86
shows the Differences Report for the MASTER DSPY and TEST DSPY records

--
Compare List

Master: NETWORK SAMPNET Test: NETWORK SAMPNET
VTAMAPPL WSIM1 VTAMAPPL WSIM2
DEV/LU VAPPL13-00001 DEV/LU VAPPL23-00001

--
MASTER TEST ALL

Sequence Number Sequence Number Checkonly Mask Mask Result REASON FOR DIFFERENCE
--------------- --------------- --------- ----- ---- --------- ---

0 0 1 Equal
2 2 * Not Equal Character Attribute Difference Detected
5 5 * Not Equal Attribute Difference Detected
6 6 * Not Equal Data Difference Detected
7 7 * Not Equal Cursor Position Difference Detected

10 10 * Not Equal Data Difference Detected

Figure 22. Example of a compare list

--
Differences Report

Master: NETWORK SAMPNET Test: NETWORK SAMPNET
VTAMAPPL WSIM1 VTAMAPPL WSIM2
DEV/LU VAPPL13-00001 DEV/LU VAPPL23-00001

--
Character Attribute Error MASTER Sequence Number 2 TEST Sequence Number 2

Highlight Color Character Set
------------- --------- -------------

MASTER REVERSE VIDEO YELLOW BASE
TEST UNDERLINED YELLOW BASE

--
Differences Report

Master: NETWORK SAMPNET Test: NETWORK SAMPNET
VTAMAPPL WSIM1 VTAMAPPL WSIM2
DEV/LU VAPPL13-00001 DEV/LU VAPPL23-00001

--
Base Attribute Error MASTER Sequence Number 5 TEST Sequence Number 5

Value Un/Protected Alpha/Numeric High Intensity Selector Pen Detectable Non-Display Modified Data Tag
----- ------------ ------------- -------------- ----------------------- ----------- -----------------

MASTER ’F8’X PROTECTED AUTO SKIP YES YES NO OFF
TEST ’F4’X PROTECTED AUTO SKIP NO YES NO OFF

Figure 23. Example of a differences report for character and base attribute differences

82 WSim V1R1 Utilities Guide

detecting cursor position differences. In the following example, the cursor is
located at (15,42) in the MASTER DSPY record and at (18,42) in the TEST DSPY
record.

Chapter 6. Using the Log Compare Utility to compare log data sets 83

--
Differences Report

Master: NETWORK SAMPNET Test: NETWORK SAMPNET
VTAMAPPL WSIM1 VTAMAPPL WSIM2
DEV/LU VAPPL13-00001 DEV/LU VAPPL23-00001

--
MASTER Screen Image MASTER Sequence Number 6 TEST Sequence Number 6 Location of Difference (15,46)

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| Set B| 1
2| Log Compare Screen | 2
3| | 3
4| Mask mmmm | 4
5| | 5
6| Lower / Uppercase Example | 6
7| | 7
8| | 8
9| | 9

10| | 10
11| | 11
12| | 12
13| | 13
14| | 14
15| This is data field one: aaaaaaa | 15
16| | 16
17| | 17
18| This is data field two: aaaaa | 18
19| | 19
20| | 20
21| | 21
22| | 22
23| | 23
24| | 24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(18) COLUMN(46) AID: ENTER KEY WHEN LOGGED: END OF MSG GEN
DIMENSIONS: (24, 80)

--
Differences Report (continued)

Master: NETWORK SAMPNET Test: NETWORK SAMPNET
VTAMAPPL WSIM1 VTAMAPPL WSIM2
DEV/LU VAPPL13-00001 DEV/LU VAPPL23-00001

--
TEST Screen Image MASTER Sequence Number 6 TEST Sequence Number 6 Location of Difference (15,46)

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| Set B| 1
2| Log Compare Screen | 2
3| | 3
4| Mask 6666 | 4
5| | 5
6| Lower / Uppercase Example | 6
7| | 7
8| | 8
9| | 9

10| | 10
11| | 11
12| | 12
13| | 13
14| | 14
15| This is data field one: aaaaaaA | 15
16| | 16
17| | 17
18| This is data field two: AAAAA | 18
19| | 19
20| | 20
21| | 21
22| | 22
23| | 23
24| | 24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(18) COLUMN(46) AID: ENTER KEY WHEN LOGGED: END OF MSG GEN
DIMENSIONS: (24, 80)

Figure 24. Example of a differences report with a upper/lowercase difference

84 WSim V1R1 Utilities Guide

Chapter 6. Using the Log Compare Utility to compare log data sets 85

--
Differences Report

Master: NETWORK SAMPNET Test: NETWORK SAMPNET
VTAMAPPL WSIM1 VTAMAPPL WSIM2
DEV/LU VAPPL13-00001 DEV/LU VAPPL23-00001

--
MASTER Screen Image MASTER Sequence Number 7 TEST Sequence Number 7 Cursor Position Difference

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| Set B| 1
2| Log Compare Screen | 2
3| | 3
4| Mask kkkk | 4
5| | 5
6| Cursor Position Example | 6
7| | 7
8| | 8
9| | 9

10| | 10
11| | 11
12| | 12
13| | 13
14| | 14
15| This is position one ==> aaaaaa | 15
16| | 16
17| | 17
18| This is position two ==> aaaaaa | 18
19| | 19
20| | 20
21| | 21
22| | 22
23| | 23
24| | 24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(15) COLUMN(42) AID: ENTER KEY WHEN LOGGED: END OF MSG GEN
DIMENSIONS: (24, 80)

--
Differences Report (continued)

Master: NETWORK SAMPNET Test: NETWORK SAMPNET
VTAMAPPL WSIM1 VTAMAPPL WSIM2
DEV/LU VAPPL13-00001 DEV/LU VAPPL23-00001

--
TEST Screen Image MASTER Sequence Number 7 TEST Sequence Number 7 Cursor Position Difference

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| Set B| 1
2| Log Compare Screen | 2
3| | 3
4| Mask 7777 | 4
5| | 5
6| Cursor Position Example | 6
7| | 7
8| | 8
9| | 9

10| | 10
11| | 11
12| | 12
13| | 13
14| | 14
15| This is position one ==> aaaaaa | 15
16| | 16
17| | 17
18| This is position two ==> aaaaaa | 18
19| | 19
20| | 20
21| | 21
22| | 22
23| | 23
24| | 24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(18) COLUMN(42) AID: ENTER KEY WHEN LOGGED: END OF MSG GEN
DIMENSIONS: (24, 80)

Figure 25. Example of a differences report with a cursor position difference

86 WSim V1R1 Utilities Guide

Figure 26 on page 88 shows the Differences Report for the MASTER DSPY and
TEST DSPY records detecting data differences. In the following example, the
difference is located at (18,46). The MASTER DSPY record contains “aaaaaa” and
the TEST DSPY record contains “zzzzzz”.

Chapter 6. Using the Log Compare Utility to compare log data sets 87

--
Differences Report

Master: NETWORK SAMPNET Test: NETWORK SAMPNET
VTAMAPPL WSIM1 VTAMAPPL WSIM2
DEV/LU VAPPL13-00001 DEV/LU VAPPL23-00001

--
MASTER Screen Image MASTER Sequence Number 10 TEST Sequence Number 10 Location of Difference (18,36)

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| Set B| 1
2| Log Compare Screen | 2
3| | 3
4| Mask qqqq | 4
5| | 5
6| Data Example | 6
7| | 7
8| | 8
9| | 9

10| | 10
11| | 11
12| | 12
13| | 13
14| | 14
15| This is field one: aaaaaa | 15
16| | 16
17| | 17
18| This is field two: aaaaaa | 18
19| | 19
20| | 20
21| | 21
22| | 22
23| | 23
24| | 24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(15) COLUMN(36) AID: ENTER KEY WHEN LOGGED: END OF MSG GEN
DIMENSIONS: (24, 80)

--
Differences Report (continued)

Master: NETWORK SAMPNET Test: NETWORK SAMPNET
VTAMAPPL WSIM1 VTAMAPPL WSIM2
DEV/LU VAPPL13-00001 DEV/LU VAPPL23-00001

--
TEST Screen Image MASTER Sequence Number 10 TEST Sequence Number 10 Location of Difference (18,36)

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| Set B| 1
2| Log Compare Screen | 2
3| | 3
4| Mask 0000 | 4
5| | 5
6| Data Example | 6
7| | 7
8| | 8
9| | 9

10| | 10
11| | 11
12| | 12
13| | 13
14| | 14
15| This is field one: aaaaaa | 15
16| | 16
17| | 17
18| This is field two: zzzzzz | 18
19| | 19
20| | 20
21| | 21
22| | 22
23| | 23
24| | 24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(15) COLUMN(36) AID: ENTER KEY WHEN LOGGED: END OF MSG GEN
DIMENSIONS: (24, 80)

Figure 26. Example of a differences report with a data difference

88 WSim V1R1 Utilities Guide

Summary Report
Figure 27 shows an example of the Log Compare Utility Summary Report.

Understanding Log Compare Utility return codes
After running, the Log Compare Utility sets a return code to indicate the status of
the execution. The Log Compare Utility can return the following codes:

Code Meaning

0 The run completed with no errors.

4 The run completed with no errors. A difference was found for at least one
resource.

8 The run completed with no errors. A difference was found for at least one
resource and synchronization was attempted.

12 The run completed with no errors. A difference was found for at least one
resource and the run was aborted.

16 An invalid command was specified.

20 Storage was not available for Log Compare Utility execution.

24 The SYSPRINT data set failed to open.

28 An invalid execution parameter was specified.

32 The MASTLDS data set failed to open.

36 The TESTLDS data set failed to open.

40 No problems with execution occurred, but no records were compared for at least
one run. (A run contains all of the output generated from a single RUN
command.)

Return codes 0, 4, 8, 12, and 40 are also used in the Summary Report for each
device or LU. However, instead of the return code referring to the entire run, it
refers to just the specific device or LU.

The overall return code is 40 only when all devices and LUs in a run have codes of
40.

--
Summary Report

--
Synchronization Sequence

Result #Records Processed #Records #Differences Run SYNCPOINT Number
Resource (RC) MASTER TEST Compared Detected Aborted Attempted Command Used MASTER TEST
--- ------ -------- -------- -------- ------------ ------- --------- ------------ -----------
NETWORK SAMPNET
VTAMAPPL WSIM1,WSIM2
DEV/LU VAPPL13-00001,VAPPL23-00001 4 11 11 6 5 NO NO
--

Figure 27. Example of a summary report

Chapter 6. Using the Log Compare Utility to compare log data sets 89

90 WSim V1R1 Utilities Guide

Chapter 7. Specifying Log Compare Utility control commands

The following sections provide a list of the control commands and operands you
can use to operate the Log Compare Utility. To help you use this information, the
next sections explain the requirements to enter the coding, the coding conventions
for control commands, and the two categories of control commands that you can
use to specify the DSPY records or portions of records to be compared during the
comparing process:
v Selection commands
v Process commands.

Coding the control commands
When you code Log Compare Utility control commands and operands, you can
enter a substring of the full keyword as an abbreviation. For example,
S D=(a),L=(1,1),S=Y

is equivalent to
SELECT DATA=(a),LOC=(1,1),SCAN=YES

However, the character string you use must be long enough to identify the
command or operand uniquely. Although the character string “S” could represent
either SELECT or START, the Log Compare Utility identifies the command
alphabetically as SELECT. To abbreviate START you must code “ST” instead of
simply “S”.

You must code all control commands in uppercase when entered using the control
command input file.

Note: The other WSim utilities do not recognize abbreviated commands, except for
the Loglist Utility and Response Time Utility, which recognize a few. Refer to
Chapter 5, “Specifying loglist control commands,” on page 45 for a listing of the
Loglist Utility control commands.

You can also include comments on all control commands that contain at least one
operand. Leave one blank space after the operand, and then enter the comment.
The Log Compare Utility ignores the comments but lists them with the control
commands as you entered them.

Understanding control command coding conventions
The control commands for the Log Compare Utility use the same coding
conventions as the Loglist Utility commands. Refer to “Understanding control
command coding conventions” on page 45 for information about the coding
conventions.

© Copyright IBM Corp. 1985, 2015 91

Selection commands
Selection commands define which records the Log Compare Utility compares
during a run. During the comparing process, the utility does not consider a DSPY
record for comparison unless the record meets the qualifications set by the
selection commands. For example, when you specify the DEV selection command,
the Log Compare Utility compares only DSPY records for the named device.

DEV command

DEV devid1[,devid2]

The DEV command specifies the name of the device that the Log Compare Utility
uses for the comparing process. You may enter this command multiple times for
each run to process multiple devices. If you omit this command entirely, all devices
found by the utility in the log data set are considered valid for the comparing
process.

If the DEV command does not follow a valid TCPIP or VTAMAPPL command, the
Log Compare Utility uses the named device on all TCP/IP connections and
VTAMAPPLs in the comparing process. If the DEV command does follow a valid
TCPIP or VTAMAPPL command, the Log Compare Utility uses the named device
on only that TCP/IP connection or VTAMAPPL in the comparing process.

If you do not enter a TERM, DEV, or LU command following a TCPIP or
VTAMAPPL command, the Log Compare Utility processes all devices or logical
units for the specified TCP/IP connection or VTAMAPPL. If no resource
commands are entered, all devices found in the log data set are valid for the
comparing process.

devid1
Function: The devid1 operand specifies the name of the device or logical unit
(LU) used in the MASTER log data set.

Format: The value of the devid1 operand is a 1- to 8-character name that
matches the name coded on a WSim network definition DEV or LU statement.

devid2
Function: The devid2 operand specifies the name of the device or LU used in
the TEST log data set.

Format: The value of the devid2 operand is a 1- to 8-character name that
matches the name coded on a WSim network definition DEV or LU statement.

Default: If devid2 is not specified, the name specified for devid1 is used as the
name of the device or LU used in the TEST log data set.

ERRCOUNT command

ERRCOUNT [ABORT=integer]
[SYNCPOINT=integer]

92 WSim V1R1 Utilities Guide

The ERRCOUNT command specifies the number of differences that may occur
before the utility performs the actions specified by the ABORT and SYNCPOINT
operands. If you do not code either operand, the utility sets ABORT and
SYNCPOINT to their default values.

ABORT=integer
Function: The ABORT operand specifies the total number of differences per
device or LU that may occur before the utility aborts the comparing process for
that device or LU.

Format: integer can be an integer from 1 to 32767.

Default: 10.

SYNCPOINT=integer
Function: The SYNCPOINT operand specifies the number of consecutive
mismatches the utility may allow before trying to synchronize the log data
sets.

Format: integer can be an integer from 1 to 255.

Default: 2.

EXCLUDE command

EXCLUDE DATA=(data)
[,LOC=(row,col)]
[,SCAN={YES|integer|1}]

The EXCLUDE command identifies specific records that the utility excludes from
the comparing process. This command is mutually exclusive with the SELECT
command. The EXCLUDE command is processed after the START command. Thus,
the starting display record may be a record that is excluded.

To use this command, you specify a string of data that identifies the 3270 DSPY
record or records to be excluded. You can specify the exact position of the data or
have WSim scan the entire record.

DATA=(data)
Function: The DATA operand specifies the data that identifies the record or
records to be excluded. The Log Compare Utility requires this operand
whenever you specify the EXCLUDE command.

Format: You can represent the data as EBCDIC, hexadecimal (enclosed in
single quote marks), or a mixture of both; the data can be up to 20 bytes in
length.

Note: SO and SI characters are removed from DBCS data entered and are not
counted as part of the previously mentioned 20 bytes. To include an SO or SI
character in the data for the data compare, add the hexadecimal equivalent of
an SO (X'0E') or SI (X'0F') to the data.

LOC=(row,col)
Function: The LOC operand indicates the exact panel position where the utility
can find the data specified by the DATA operand.

Format: The values for row and col can be integers from 1 to 255.

Default: The default is 1 for both row and col.

Chapter 7. Specifying Log Compare Utility control commands 93

SCAN={YES|integer|1}
Function: The SCAN operand specifies whether or not the utility is to scan the
record sequentially for the data specified in the DATA operand. When you
specify scanning, the utility searches the record starting at the location
specified in the LOC operand. If you omit the LOC operand, the starting
location is (1,1) of the screen image.

If you code YES for the SCAN operand, the utility searches the record from the
position specified by the LOC operand to the end. If you specify an integer, the
utility searches the number of positions specified by integer.

Format: integer can be an integer from 1 to 32767.

Default: 1.

LU command

LU lu1[-num1][,lu2[-num2]]

The LU operand specifies the name of the logical unit that the utility uses for the
comparing process. You may enter this command multiple times for each run to
process multiple LUs. If you omit this command, the utility considers all LUs
found in the log data set valid for the comparing process.

If the LU command does not follow a valid TCPIP or VTAMAPPL command, the
Log Compare Utility uses the named logical unit from TCP/IP connections and
VTAMAPPLs in the comparing process. If the LU command does follow a valid
TCPIP or VTAMAPPL command, the Log Compare Utility uses the named logical
unit only from the specified TCP/IP connection or VTAMAPPL.

If you do not enter a TERM, DEV, or LU command following a TCPIP or
VTAMAPPL command, the Log Compare Utility processes all devices or logical
units for the specified TCP/IP connection or VTAMAPPL. If no resource
commands are entered, all logical units found in the log data set are valid for the
comparing process.

lu1
Function: lu1 specifies the name of the logical unit (LU) used in the MASTER
log data set.

Format: The value of lu1 is a 1- to 8-character name that matches the name
coded on a WSim network definition LU statement.

-num1
Function: -num1 specifies a specific half-session of the logical unit being
selected for use in the MASTER log data set.
v If -num1 is not specified when lu2-num2 are specified, -num2 is used as the

number of the half-session of the LU used in the MASTER log data set.
v If both -num1 and lu2-num2 are not specified, the utility uses all half-sessions

of the LUs specified for the comparing process.

lu2
Function: lu2 specifies the name of the LU used in the TEST log data set.

Format: The value of lu2 is a 1- to 8-character name that matches the name
coded on a WSim network definition LU statement.

94 WSim V1R1 Utilities Guide

Default: If lu2 is not specified, the name specified for lu1 is used as the name
of LU used in the TEST log data set.

-num2
Function: -num2 specifies a specific half-session of the logical unit being
selected for use in the TEST log data set.
v If -num2 is not specified when -num1 is specified, -num1 is used as the

number of the half-session of the LU used in the TEST log data set.
v If both -num1 and -num2 are not specified, the utility uses all half-sessions of

the LUs specified for the comparing process.

MSGTXT command

MSGTXT msgtxtid1[,msgtxtid2]

The MSGTXT command specifies the name of the message generation deck or STL
procedure that the utility selects for the comparing process. The utility selects only
those records logged for the specified message generation deck or STL procedure.
If you enter this command multiple times for each run, the utility selects multiple
message generation decks or STL procedures.

msgtxtid1
Function: The msgtxtid1 operand specifies the name of the message generation
deck or STL procedure used in the MASTER log data set.

Format: The value of the msgtxtid1 operand is a 1- to 8-character name that
matches the name coded on a WSim message generation or STL MSGTXT
statement.

msgtxtid2
Function: The msgtxtid2 operand specifies the name of the message generation
deck or STL procedure used in the TEST log data set.

Format: The value of the msgtxtid2 operand is a 1- to 8-character name that
matches the name coded on a WSim message generation or STL MSGTXT
statement.

Default: If msgtxtid2 is not specified, the name specified for msgtxtid1 is used
as the name of the message generation deck or STL procedure used in the
TEST log data set.

NTWRK command

NTWRK netname1[,netname2]

The NTWRK command specifies the name of the network the utility uses for the
comparing process.

If you enter more than one NTWRK command, the Log Compare Utility uses the
last one entered. If you do not enter a NTWRK command, the Log Compare Utility
includes all networks found in the log data set in the comparing process.

Chapter 7. Specifying Log Compare Utility control commands 95

netname1
Function: The netname1 operand specifies the name of the network used in the
MASTER log data set.

Format: The value of the netname1 operand is a 1- to 8-character name that
matches the name coded on a WSim network definition NTWRK statement.

netname2
Function: The netname2 operand specifies the name of the network used in the
TEST log data set.

Format: The value of the netname2 operand is a 1- to 8-character name that
matches the name coded on a WSim network definition NTWRK statement.

Default: If netname2 is not specified, the name used for netname1 is used as the
name of the network used in the TEST log data set.

SELECT command

SELECT DATA=(data)
[,LOC=(row,col)]
[,SCAN={YES|integer|1}]

The SELECT command identifies only the specific records that the utility is to
select for the comparing process. This command is mutually exclusive with the
EXCLUDE command. The SELECT command is processed after the START
command. Thus, the starting display record may be a record that is not selected.

To use this command, you specify a string of data that identifies the record or
records to be selected. You can specify the exact position of the data or have the
Log Compare Utility scan the entire record.

DATA=(data)
Function: The DATA operand specifies the data that identifies the record or
records to be selected. The Log Compare Utility requires this operand
whenever you specify the SELECT command.

Format: You can represent the data as EBCDIC, hexadecimal (enclosed in
single quote marks), or a mixture of both; the data can be up to 20 bytes in
length.

Note: SO and SI characters are removed from DBCS data entered and are not
counted as part of the previously mentioned 20 bytes. To include an SO or SI
character in the data for the data compare, add the hexadecimal equivalent of
an SO (X'0E') or SI (X'0F') to the data.

LOC=(row,col)
Function: The LOC operand indicates the exact panel position where the utility
can find the data specified by the DATA operand.

Format: The values for row and col can be integers from 1 to 255.

Default: The default is 1 for both row and col.

SCAN={YES|integer|1}
Function: The SCAN operand specifies whether or not the utility is to scan the
record sequentially for the data specified in the DATA operand. When you

96 WSim V1R1 Utilities Guide

specify scanning, the utility searches the record starting at the location
specified in the LOC operand. If you omit the LOC operand, the starting
location is (1,1) of the screen image.

If you code YES for the SCAN operand, the utility searches the record to the
end. If you specify an integer, the utility searches the number of positions
specified by integer.

Format: integer can be an integer from 1 to 32767.

Default: 1.

START command

START DATA=(data)
[,LOC=(row,col)]
[,SCAN={YES|integer|1}]

The START command identifies a specific record in the log data set that the utility
will use to start comparing display records. Although you can issue START more
than once, subsequent START commands override previous START commands.
After the starting display record is selected, the processing for the SELECT and
EXCLUDE commands begins. Thus, the starting display record may be a record
that is excluded (by way of the EXCLUDE or SELECT command).

DATA=(data)
Function: The DATA operand specifies the data that identifies the record the
utility uses to start the comparing process. The Log Compare Utility requires
this operand whenever you specify the START command.

Format: You can represent the data as EBCDIC, hexadecimal (enclosed in
single quote marks), or a mixture of both; the data can be up to 20 bytes in
length.

Note: SO and SI characters are removed from DBCS data entered and are not
counted as part of the previously mentioned 20 bytes. To include an SO or SI
character in the data for the data compare, add the hexadecimal equivalent of
an SO (X'0E') or SI (X'0F') to the data.

LOC=(row,col)
Function: The LOC operand indicates the exact panel position where the utility
can find the data specified by the DATA operand.

Format: The values for row and col can be integers from 1 to 255.

Default: The default is 1 for both row and col.

SCAN={YES|integer|1}
Function: The SCAN operand specifies whether or not the utility is to scan the
record sequentially for the data specified in the DATA operand. When you
specify scanning, the utility searches the record starting at the location
specified in the LOC operand. If you omit the LOC operand, the starting
location is (1,1) of the screen image.

If you code YES for the SCAN operand, the utility searches the record to the
end. If you specify an integer, the utility searches the number of positions
specified by integer.

Format: integer can be an integer from 1 to 32767.

Chapter 7. Specifying Log Compare Utility control commands 97

Default: 1.

SYNCPOINT command

SYNCPOINT DATA=(data)
[,LOC=(row,col)]
[,SCAN={YES|integer|1}]

The SYNCPOINT command identifies specific records to use if the utility
synchronizes the log data sets. To format this command, you specify a string of
data that identifies the record or records to be selected. You can specify the exact
position of the data or have the Log Compare Utility scan the entire record. You
can also enter multiple SYNCPOINT commands to define more than one type of
record that can be used for a syncpoint. After the Log Compare Utility finds the
first syncpoint in the MASTER log data set, it searches for the same syncpoint in
the TEST log data set. The Complete Records List will show that syncpoint was
met only if it was met in both the MASTER and TEST log data sets.

DATA=(data)
Function: The DATA operand specifies the data that identifies the record the
utility uses to synchronize the log data sets. The Log Compare Utility requires
this operand whenever you specify the SYNCPOINT command.

Format: You can represent the data as EBCDIC, hexadecimal (enclosed in
single quote marks), or a mixture of both; the data can be up to 20 bytes in
length.

Note: SO and SI characters are removed from DBCS data entered and are not
counted as part of the previously mentioned 20 bytes. To include an SO or SI
character in the data for the data compare, add the hexadecimal equivalent of
an SO (X'0E') or SI (X'0F') to the data.

LOC=(row,col)
Function: The LOC operand indicates the exact panel position where the utility
can find the data specified by the DATA operand.

Format: The values for row and col can be integers from 1 to 255.

Default: The default is 1 for both row and col.

SCAN={YES|integer|1}
Function: The SCAN operand specifies whether or not the utility is to scan the
record sequentially for the data specified in the DATA operand. When you
specify scanning, the utility searches the record starting at the location
specified in the LOC operand. If you omit the LOC operand, the starting
location is (1,1) of the screen image.

If you code YES for the SCAN operand, the utility searches the record to the
end. If you specify an integer, the utility searches the number of positions
specified by integer.

Format: integer can be an integer from 1 to 32767.

Default: 1.

98 WSim V1R1 Utilities Guide

TCPIP command

TCPIP tcpipid1[,tcpipid2]

The TCPIP command specifies the TCP/IP connection ID of the device that the
utility uses for the comparing process.

If you enter any TCPIP or VTAMAPPL command, the Log Compare Utility
includes only those TCP/IP connections or VTAMAPPLs in the comparing process.
If you do not enter any TCPIP or VTAMAPPL commands, TCP/IP connections and
VTAMAPPLs found in the log data set are valid for the comparing process.

tcpipid1
Function: The tcpipid1 operand specifies the name of the TCP/IP connection
used in the MASTER log data set.

Format: The value of the tcpipid1 operand is a 1- to 8-character name that
matches the name coded on a WSim network definition TCPIP statement.

tcpipid2
Function: The tcpipid2 operand specifies the name of the TCP/IP connection
used in the TEST log data set.

Format: The value of the tcpipid2 operand is a 1- to 8-character name that
matches the name coded on a WSim network definition TCPIP statement.

Default: If tcpipid2 is not specified, the name specified for tcpipid1 is used as
the name of the TCP/IP connection used in the TEST log data set.

TERM command

TERM termid1[,termid2]

The TERM command specifies the name of the terminals that the utility uses for
the comparing process. You may enter this command multiple times for each run
to process multiple terminals. If you omit this command, the utility considers all
devices found in the log data set valid for the comparing process.

If the TERM command does not follow a valid TCPIP or VTAMAPPL command,
the Log Compare Utility processes the named terminal on all TCP/IP connections
or VTAMAPPLs. If the TERM command does follow a valid TCPIP or VTAMAPPL
command, the Log Compare Utility processes the named terminal on the specified
TCP/IP connection or VTAMAPPL only.

If you do not enter a TERM, DEV, or LU command following a TCPIP or
VTAMAPPL command, the Log Compare Utility processes all devices or logical
units for the specified TCP/IP connection or VTAMAPPL. If no resource
commands are entered, all terminals found in the log data set are valid for the
comparing process.

termid1
Function: The termid1 operand specifies the name of the device or logical unit
(LU) used in the MASTER log data set.

Chapter 7. Specifying Log Compare Utility control commands 99

Format: The value of the termid1 operand is a 1- to 8-character name that
matches the name coded on a WSim network definition DEV or LU statement.

termid2
Function: The termid2 operand specifies the name of the device or LU used in
the TEST log data set.

Format: The value of the termid2 operand is a 1- to 8-character name that
matches the name coded on a WSim network definition DEV or LU statement.

Default: If termid2 is not specified, the name specified for termid1 is used as the
name of the device or LU used in the TEST log data set.

VTAMAPPL command

VTAMAPPL vtamapplid1[,vtamapplid2]

The VTAMAPPL command specifies the VTAM application ID of the device that
the utility uses for the comparing process.

If you enter any TCPIP or VTAMAPPL command, the Log Compare Utility
includes only those TCP/IP connections or VTAMAPPLs in the comparing process.
If you do not enter any TCPIP or VTAMAPPL commands, all TCP/IP connections
and VTAMAPPLs found in the log data set are valid for the comparing process.

vtamapplid1
Function: The vtamapplid1 operand specifies the name of the VTAMAPPL used
in the MASTER log data set.

Format: The value of the vtamapplid1 operand is a 1- to 8-character name that
matches the name coded on a WSim network definition VTAMAPPL statement.

vtamapplid2
Function: The vtamapplid2 operand specifies the name of the VTAMAPPL used
in the TEST log data set.

Format: The value of the vtamapplid2 operand is a 1- to 8-character name that
matches the name coded on a WSim network definition VTAMAPPL statement.

Default: If vtamapplid2 is not specified, the name specified for vtamapplid1 is
used as the name of the VTAMAPPL used in the TEST log data set.

Process commands
The Log Compare Utility uses process commands to control the comparing
process. For example, process commands such as the RUN and END commands
define the beginning and end of the comparing process. If you do not code any
commands other than RUN and END, the utility compares every display record for
all devices or LUs in the log data sets. In addition, process commands determine
which reports the utility generates after the run.

ATTRIBUTE command

ATTRIBUTE

100 WSim V1R1 Utilities Guide

The ATTRIBUTE command specifies that if attributes are present for both records,
the utility compares the attributes as well as the screen data. If you do not specify
the ATTRIBUTE command, the utility compares only screen data. That is, if
attributes exist for both records but you do not use the command, the utility skips
the location of the attributes and compares only the screen data, not the attribute
values.

If you specify the ATTRIBUTE command and attributes exist for both records, the
utility locates and compares the attribute in the MASTER record against the
attribute in the TEST record. The utility compares extended attributes, if any, in the
same way.

If attributes are not present in one or both of the MASTER and TEST records, the
utility treats both screen images like pure data and continues the comparing
process. For example, if only the MASTER record has attributes, the utility
compares the MASTER record attributes against whatever data appears at the
corresponding location in the TEST record and lists records with differences.

Note: The ATTRIBUTE command tells the utility to compare the attributes with
the same offsets. Field offsets are compared regardless of the ATTRIBUTE
command unless the attribute bytes are masked. For example, an attribute in the
master record without a corresponding one at the same offset in the test record
always shows as a difference.

CHARATTR command

CHARATTR

The CHARATTR command specifies that if character attributes are present for both
the MASTER and the TEST DSPY record, the Log Compare Utility compares the
character attributes along with the that panel data. The Log Compare Utility
compares data in fields first, and if no differences are found, it then compares the
character attributes.

If you do not specify the CHARATTR command, the Log Compare Utility
compares panel data only.

CHECKONLY command

CHECKONLY DATA=(data)
,CHECKLOC=(row,col,leng)
[,LOC=(row,col)]
[,SCAN={YES|integer|1}]

The CHECKONLY command specifies that the utility compare only a portion of
the records identified for comparison. The DATA, LOC, and SCAN operands
specify the string of data the utility uses to identify a record. After the utility finds
a record that matches the specifications, the CHECKLOC operand specifies which
field is to be compared.

Chapter 7. Specifying Log Compare Utility control commands 101

You can issue multiple CHECKONLY commands to define multiple records that
require the comparison of only specific fields.

Note: If you have coded the CHECKONLY and the MASK commands, the Log
Compare Utility checks all CHECKONLY commands before checking any MASK
commands. The Log Compare Utility checks the MASK commands only if the
DSPY record did not match any of the CHECKONLY commands. Only one
CHECKONLY statement is applied to a screen prior to comparison.

DATA=(data)
Function: The DATA operand specifies the data that identifies the record. The
Log Compare Utility requires this operand whenever you specify the
CHECKONLY command.

Format: You can represent the data as EBCDIC, hexadecimal (enclosed in
single quote marks), or a mixture of both; the data can be up to 20 bytes in
length.

Note: SO and SI characters are removed from DBCS data entered and are not
counted as part of the previously mentioned 20 bytes. To include an SO or SI
character in the data for the data compare, add the hexadecimal equivalent of
an SO (X'0E') or SI (X'0F') to the data.

CHECKLOC=(row,col,leng)
Function: The CHECKLOC operand identifies the field that the utility
compares for the record. The Log Compare Utility requires this operand
whenever you specify the CHECKONLY command. You must specify the row
and column location of the field and the length of the field (row,col,leng).

You can issue the CHECKLOC operand multiple times for a single
CHECKONLY command, defining multiple fields to be compared.

If a CHECKLOC operand specifies a location beyond the end of the screen
buffer, the Log Compare Utility ignores that location. Therefore, if all of the
locations specifies by CHECKLOC operands are out of range, the Log Compare
Utility always considers the panels equal because there are no fields specified
within the screen buffer to compare.

Format: The values for row, col, and leng are integers from 1 to 255.

LOC=(row,col)
Function: The LOC operand indicates the exact panel position where the utility
can find the data specified by the DATA operand or where the scan is to start
if you specify the SCAN operand.

Format: The values for row and col can be integers from 1 to 255.

Default: The default is 1 for both row and col.

SCAN={YES|integer|1}
Function: The SCAN operand specifies whether or not the utility is to scan the
record sequentially for the data specified in the DATA operand. When you
specify scanning, the utility searches the record starting at the location
specified in the LOC operand. If you omit the LOC operand, the starting
location is (1,1) of the screen image.

If you code YES for the SCAN operand, the utility searches the record to the
end. If you specify an integer, the utility searches the number of positions
specified by integer.

Format: integer can be an integer from 1 to 32767.

102 WSim V1R1 Utilities Guide

Default: 1.

CURSOR command

CURSOR

The CURSOR command specifies that the Log Compare Utility compares the
cursor position on the MASTER and TEST DSPY records. The Log Compare Utility
compares data in fields first. If no difference is detected, the utility then compares
the cursor position. MASK and CHECKONLY do not apply to cursor position
comparisons.

If you do not specify the CURSOR command, the Log Compare Utility compares
panel data only.

END command

END

The END command specifies that the Log Compare Utility has completed the
comparing process; no further processing occurs. The utility ignores any
commands entered since the last RUN command.

HEADER command

HEADER data

The HEADER command defines the data that the utility uses as the page header
on the Log Compare Utility output reports. You can code any data for the data
operand.

data
Function: The data operand specifies the header line to be used.

Format: The value of the data operand can be up to 27 characters, including
blanks and special characters. The report header begins with the first nonblank
character coded after the HEADER command and ends with the character in
column 71 or after a length of 27 characters, whichever comes first.

Default: If you do not enter this command, the output header defaults to
“WSim LOG COMPARE UTILITY”.

MASK command

MASK MASKLOC=(row,col,leng)
[,DATA=(data)]
[,LOC=(row,col)]
[,SCAN={YES|integer|1}]

Chapter 7. Specifying Log Compare Utility control commands 103

The MASK command specifies a specific field or fields that are not to be
compared. The DATA, LOC, and SCAN operands specify the string of data the
utility uses to identify a specific record. If you code the DATA operand, then the
utility masks the field or fields for the records or records identified by the DATA
operand. If you omit the DATA operand, then the utility masks the specified field
or fields for all records compared. This is referred to as an All Mask operation in
the reports provided by the Log Compare Utility. The Log Compare Utility allows
only one All Mask operation during a run.

The LOC and SCAN operands are valid only when you code the DATA operand.
The fields or fields to be masked are specified with the MASKLOC operand.

You can issue multiple MASK commands to define more than one record that
requires the utility to mask a field.

Note: The Log Compare Utility checks any MASK commands after checking the
CHECKONLY commands, if any. If the record does not match any of the
CHECKONLY commands, only then does the Log Compare Utility check the
MASK commands. If you use the MASKLOC operand and not the DATA operand,
the All Mask operation will also be applied. Only one MASK statement (not
including “All Mask” operations) is applied to a screen prior to comparison.

MASKLOC=(row,col,leng)
Function: The MASKLOC operand identifies the field that the utility masks for
the record. The Log Compare Utility requires this operand whenever you
specify the MASK command. You must specify the row and column location of
the field and the length of the field (row,col,leng).

If a MASKLOC operand specifies a location beyond the end of the screen
buffer, the Log Compare Utility ignores that location. Therefore, if all the
locations specified by MASKLOC operands are out of range, the Log Compare
Utility compares both records in full because no fields within the screen buffer
are masked.

You can issue the MASKLOC operand multiple times for a single MASK
command, defining multiple fields to be masked. For example, you could mask
both date and time, which would be likely to vary for two different simulation
runs.

Format: The values for row, col, and leng can be integers from 1 to 255.

DATA=(data)
Function: The DATA operand specifies the data that identifies the record. If
you omit the DATA operand, then the utility masks the specified field or fields
for all records compared. This is referred to as an All Mask operation in the
reports provided by the Log Compare Utility.

Format: You can represent the data as EBCDIC, hexadecimal (enclosed in
single quote marks), or a mixture of both; the data can be up to 20 bytes in
length.

Note: SO and SI characters are removed from DBCS data entered and are not
counted as part of the previously mentioned 20 bytes. To include an SO or SI
character in the data for the data compare, add the hexadecimal equivalent of
an SO (X'0E') or SI (X'0F') to the data.

104 WSim V1R1 Utilities Guide

LOC=(row,col)
Function: The LOC operand indicates the exact panel position where the utility
can find the data specified by the DATA operand or where the scan is to start
if you specify the SCAN operand.

Format: The values for row and col can be integers from 1 to 255.

Default: The default is 1 for both row and col.

SCAN={YES|integer|1}
Function: The SCAN operand specifies whether or not the utility is to scan the
record sequentially for the data specified in the DATA operand. When you
specify scanning, the utility searches the record starting at the location
specified in the LOC operand. If you omit the LOC operand, the starting
location is (1,1) of the screen image.

If you code YES for the SCAN operand, the utility searches from the location
specified by the LOC operand to the end of the record. If you specify an
integer, the utility searches the number of positions specified by integer.

Format: integer can be an integer from 1 to 32767.

Default: 1.

P command

P

The P command specifies that the Log Compare Utility stop reading commands
input from the operator's terminal and begin reading commands from the SYSIN
data set. If you enter this command when the SYSIN data set is not open, the
utility continues requesting input from the console. The utility ignores the P
command if it finds the command in the SYSIN data set.

REPORT command

REPORT [RECORDS]
[,COMPARES]
[,DIFFERENCES]
[,SUMMARY]

The REPORT command specifies which reports the utility generates for this run of
the Log Compare Utility. If you do not issue a REPORT command, the utility
generates only the Active Command List, the Differences Report, and the Summary
Report. If you issue a REPORT command without specifying an operand, the
utility does not generate any reports except the Active Command List. For detailed
information about these reports, refer to “Information you can obtain with the Log
Compare Utility” on page 72.

Issue the REPORT command with one or more of the following operands to
generate the associated report.

RECORDS
Function: The RECORDS operand specifies that the utility generate a Complete
Records List for each device processed during the run.

Chapter 7. Specifying Log Compare Utility control commands 105

COMPARES
Function: The COMPARES operand specifies that the utility generate a
Compare List for each device processed during the run.

DIFFERENCES
Function: The DIFFERENCES operand specifies that the utility generate a
Differences Report for each device processed during the run.

SUMMARY
Function: The SUMMARY operand specifies that the utility generate a
Summary Report for the run.

RUN command

RUN

The RUN command specifies that you have entered all commands and that the
utility can begin processing the log data sets. The utility requires this command
prior to processing. After processing, the utility resets all variables to their default
values before interpreting additional commands. If you issue the RUN command
without entering any other commands, the utility processes all records using the
default values.

UPPERCASE command

UPPERCASE

The UPPERCASE command specifies that the utility perform lowercase to
uppercase translation before comparing data from the two log data sets. The
default for this command is no translation from lower to uppercase; specify the
UPPERCASE command to override this default.

* Command

* [data]

The * command specifies a comment. You can enter any data following the
asterisk. Data following the asterisk is listed with input commands as you entered
them, but the Log Compare Utility does not include them in the Active Command
List or process them during the comparing process.

106 WSim V1R1 Utilities Guide

Chapter 8. Using the Response Time Utility to analyze
response times

The Response Time Utility analyzes the log data set and prints reports that list the
response times of the system under test. The Response Time Utility calculates
response times for each terminal using the log data set record time stamps from a
pair of transmit and receive records. Because transmit-receive pairs are determined
on a terminal name basis, the terminal names should be unique in a network
definition. The Response Time Utility uses a set of default rules for determining
the transmit and receive record pairings. However, you can change these rules by
specifying operands for the Response Time Utility to use when selecting the
transmit and receive records.

Note: WSim provides an online response statistics reporting facility, RSTATS, that
is not related to the Response Time Utility. You can use RSTATS to monitor the
response times of simulated devices while WSim is executing a script. In contrast,
the Response Time Utility is a postprocessor. It uses data from the log data set of a
previous WSim simulation run. For more information about the RSTATS facility,
refer to WSim User's Guide.

The sections in this chapter present information about the following items:
v The types of reports, listings, and graphs you can obtain with the Response Time

Utility
v How to run the Response Time Utility, including:

– Calculation of response times for devices and transactions
– Estimation of virtual storage
– Running the Response Time Utility from the WSim/ISPF Interface
– Execution parameters to use with JCL or a TSO CLIST
– Examples of JCL and a TSO CLIST for running the Response Time Utility
– Sample output from an example of an input command file.

Information you can obtain with the Response Time Utility
This section describes the output produced by the Response Time Utility.

Response time reports
Using the REPORT command and the REPORT operand of the VTAMAPPL,
APPCLU or TPCIPstatement, you can specify the following levels of response time
reports:

TERM This report provides information about the response times for a particular
terminal.

TERMGRP This report provides cumulative information about the response times for all
of the terminals associated with a particular VTAM application, APPC LU or
TCP/IP connection.

SUMMARY This report provides cumulative information about the response times for all
of the terminals in a run.

© Copyright IBM Corp. 1985, 2015 107

When user transactions have been defined, each of these report types can be
requested for each unique transaction type.

The response time report contains the following information:
v The header lines of the report between the dotted lines identify the

characteristics of the report. The report contains the following fields in the
header lines:

Report type The title of the report is either TERMINAL REPORT, TERMGRP
REPORT, or SUMMARY REPORT.

NETWORK The name of the network being processed. This field contains the
characters ALL NETWORKS if a NTWRK command was not
specified.

TCPIP, VTAMAPPL, or
APPCLU

The name of the TCP/IP connection, VTAM application, or
APPC LU being processed. This field is blank for a Summary
Report.

TERMINAL The name of the terminal being processed. This field is blank for
a Termgrp or Summary Report.

PROCESS Either SYSTEM or ACTUAL.

EXIT The name of the user exit routine or blank if no exit routine is
present.

TERMTYPE An alphanumeric name describing the type of terminal for this
report. This field is blank for a Termgrp or Summary Report.

TIME LIMITS The time limits for the run as specified by the TIME command.

START TIME The READY time stamp from the first record found for this
report.

END TIME The READY time stamp from the last record found for this
report.

TRANSACTION The name of the transaction type for this report. This field is
omitted if there are no user-defined transactions. The characters
“*ALL*” indicate that this report is a summary for all transaction
types.

v After the header lines, there is an optional listing of the individual response
times identified by the following fields:

RESPONSE TIME The time between a message being transmitted from WSim and the
response being received from the system under test. The format is
hh.mm.ss.th (hours, minutes, seconds, tenths and hundredths of
seconds).

COUNT The number of times that the corresponding response time was
encountered during this run.

v The following fields also appear on the response time report:

MEAN RESPONSE The total of all the response times divided by the total
number of responses.

MEDIAN RESPONSE The 50th percentile response time. Half of the response times
fell above the median and half below.

MODE RESPONSE The response time that occurred most often in the set of
measured response times. The Response Time Utility will
print a mode value only if there was a unique response time
that occurred more often than other response times.
Otherwise, “--” is printed.

108 WSim V1R1 Utilities Guide

AVERAGE LENGTH The average length of the messages transmitted and received
without regard to the number of response times computed.
For SNA devices, this is the length of RUs only.

LOW RESPONSE The smallest response time value computed during the run.

HIGH RESPONSE The largest response time value computed during the run.

AVERAGE QUEUE TIME The average time that a terminal must wait to transmit a
message after it is ready to transmit (wait for poll).

A single queue time is the difference between the READY
and START time stamps of an XMIT record that begins a
valid response time. The queue time for a message is not
included in the SYSTEM response time, but is a component
of the ACTUAL response time.

NUMBER OF RESPONSES The total number of response times computed for this report.

MESSAGES SENT The total number of messages transmitted without regard to
the number of response times computed. If user transactions
have been defined, this number is reported only on the
reports that summarize all transaction types. For messages
composed of multiple SNA chain elements, each element is
counted as a message sent.

MESSAGES RECEIVED The total number of messages received without regard to the
number of response times computed. If user transactions
have been defined, this number is reported only on the
reports that summarize all transaction types. For messages
composed of multiple SNA chain elements, each element is
counted as a message received.

PER MINUTE The number of response times per minute and the number of
messages sent and received per minute are reported. These
rates are computed only if the time interval for the report (as
defined by the START TIME and END TIME values in the
header lines) is at least one minute. See “Response time
reports” on page 107 for a definition of these fields.

RESPONSES DISCARDED The number of response times that were not included in any
calculations because of virtual storage limitations.

VARIANCE A measure of the differences in the response times. The
sample variance of response times will be computed by the
following equation, which yields an unbiased estimate of the
true variance:

Variance = [ss - t²/n] / (n-1)

where n is the total number of responses, ss is the sum of
squares of the response times, and t is the total of the
response times.

The variance value of “--” will be reported if the computed
value is greater than 999.9999.

Chapter 8. Using the Response Time Utility to analyze response times 109

95% CI Two values computed from the sample response times that
delimit, with 95% confidence, the theoretical average
response time. The assumption is made that the sample
average is approximately normally distributed. This
assumption is valid if the total number of responses is at
least 25 and the individual response times can be considered
to be statistically independent. The limits of the interval are
computed by the following formula:

a ± (1.96 x sqrt [v/n])

where a is the sample average of the response times, v is the
sample variance, n is the total number of responses, and sqrt
indicates the square root function.

If there are fewer than 25 response times, the mean
confidence interval values are not calculated and “--” will be
printed beside this heading to indicate it is not applicable.

PERCENTILE, RESPONSE
TIME, AVERAGE

These titles provide a header line for a table of percentile
values. The Percentile column contains the percentile
numbers requested by the PERCENT command. The
Response Time column contains the computed percentile
values. A percentile value is a response time such that the
specified percentage of all the response times is less than or
equal to this value. A value in the Average column is the
average of all response times less than and including the
value in the Response Time column.

Transaction record listing
You can use the TPRINT command to request a listing of the log records that are
selected for transaction processing by the other input commands such as
VTAMAPPL, APPCLU, TCPIP, and TERM. No records are listed unless at least one
transaction is defined by a BTRANS command and, optionally, an ETRANS
command. One line is printed for each log record selected, and the listing occurs
before any other output reports. The following information will be printed for each
record:
v TCP/IP connection, VTAM application, or APPC LU name.
v Terminal name.
v Transmit or receive indicator (XMIT or RECV).
v Transaction status.
v Up to 60 data characters from the message in EBCDIC. Unprintable characters

will be translated to periods (.)
v User data byte from the log record header (printed in hexadecimal and EBCDIC)
v START, STOP, and READY time stamps.

The transaction status can be either B-type or E-type to indicate whether the record
begins or ends a transaction. The type is the name from the BTRANS TYPE
operand. There is one exception; if you define a transaction with a BTRANS
command only (no ETRANS command), and you specify PROCESS ACTUAL, the
ending status E-type is not printed. The status area will also be blank for a record
that does not begin or end a transaction. In the event that MATCH=LAST has been
specified on a BTRANS or ETRANS command, it is possible that the status fields
of several successive records might have B-type or E-type printed. If this is the case,
only the last of these records is considered the actual beginning or ending of the
transaction.

110 WSim V1R1 Utilities Guide

Response listing file
The Response Time Utility can create a sequential data set consisting of one record
for each response time computed during the run. The basic record contains the
following information:

Columns Field Contents

1-8 TCP/IP connection, VTAM application, or APPC LU name (EBCDIC)

10-22 Terminal name

10-17 Name

18-22 Session number

24-31 Transaction name

34 User data byte (hexadecimal)

37-40 Transaction start time (binary hundredths of seconds)

44-51 Transaction start time (EBCDIC)

54-57 Response time (binary hundredths of seconds)

61-68 Response time (EBCDIC)

71-78 Message generation deck name

The extended record contains the following additional information:

Columns Field Contents

81-88 Response time in seconds, long floating point format

90-98 Response time in EBCDIC, nnnnnn.nn format

100-107 Time of day in binary when the transaction end log record was written to the
log data set

100-103 Time of day in binary 1/100 seconds

104-107 Date in 00yydddf format

109-116 Time of day in EBCDIC when the transaction end log record was written to the
log data set, in hhmmssth format

118-122 Date in EBCDIC when the transaction end log record was written to the log
data set, in yyddd format

124-131 Network name

133-159 HEADER command character string.

The JCL ddname for the file must be LISTDD. The LISTDD DD and the LIST or
LISTX execution parameter must be specified for the run before the Response Time
Utility will attempt to create the response listing file. If transaction processing is
not being done, the transaction name field will be all blanks, and the transaction
start time will be a READY time stamp for PROCESS ACTUAL or a STOP time
stamp for PROCESS SYSTEM. If transactions have been specified, the transaction
start time on each record will be the time stamp specified by the BTRANS
statement TIME operand. Each record in the LISTDD file will be padded with
blanks to a length of 80 bytes for the LIST execution parameter, 160 bytes for
LISTX. The default BLKSIZE for the LISTDD statement is 80 bytes for the LIST
execution parameter, 160 bytes for LISTX.

The extended records produced when the LISTX execution parameter is specified
provide additional information that is required for record processing by program
products such as Service Level Reporter (SLR) using user-defined SLR Adaptable
Log Layout (ALL) log tables and user programs.

Chapter 8. Using the Response Time Utility to analyze response times 111

Response Time Frequency Distribution
The Response Time Frequency Distribution is a histogram showing the percentage
of occurrence of each calculated response time for the period of time defined for
the run. Figure 31 on page 125 shows an example of the histogram. The y-axis
(vertical) shows the percentage of responses in 2 percent increments from 0 to 100.
The x-axis (horizontal) shows the response time values in even tenths of seconds
using 50 increments. The first response time value used on the x-axis is the lowest
response time truncated to an even tenth of a second. For example, if the lowest
response time is 2.36 seconds, the first response time value used on the x-axis is 2.2
seconds.

You can use the GRAPH command to specify the increment value to be used on
the x-axis (in tenths of seconds). If a GRAPH number of 0 is specified, the
increment value is determined by subtracting the lowest response time from the
highest response time and dividing the difference by 50.

You can control when the frequency distribution graphs are printed by using the
REPORT command and the REPORT operand on the VTAMAPPL, APPCLU,
TCPIP, and TERM commands.

Cumulative Response Time Distribution
The Cumulative Response Time Distribution is a graph showing the cumulative
distribution of response times for the period of time defined for the run. Figure 32
on page 126 shows an example of this graph. The y-axis (vertical) shows the
percentage of responses in 2 percent increments from 0 to 100. The x-axis
(horizontal) shows the response time values in even tenths of seconds using 50
increments. The first response time value used on the x-axis is the lowest response
time truncated to a full second. For example, if the lowest response time is 2.36
seconds, the first response time value used on the x-axis is 2.2 seconds.

You can use the CGRAPH command to specify the increment value to be used on
the x-axis (in tenths of seconds). If a CGRAPH number of 0 is specified, the
increment value is determined by subtracting the lowest response time from the
highest response time and dividing the difference by 50.

You can control when the cumulative graphs are printed by using the REPORT
command and the REPORT operand on the VTAMAPPL, APPCLU, TCPIP, and
TERM commands.

Time Graph of Responses
A Time Graph of Responses shows how the response times for a terminal or group
of terminals vary over a period of time. Figure 33 on page 127 is an example of
this graph. Each horizontal line of a time graph represents a time interval of
user-specified length and plots the minimum, average, and maximum response
times computed during that interval. Since response times are computed when
WSim receives records, it is possible that an individual response time period may
begin in one TGRAPH interval and end in a later TGRAPH interval. In this case,
the response time is accumulated in the later interval. To minimize possible
distortion of the time graph, make sure that the chosen INTERVAL value on the
TGRAPH command exceeds the maximum response time for each interval.

Each response time is rounded to the nearest increment value as specified by the
INCR operand. You can set the range of response times plotted by specifying the
ORIGIN and INCR operands. If a response time is outside the specified range, then

112 WSim V1R1 Utilities Guide

its character will be plotted at the limit of the range. If only one response time is
accumulated during a single interval, then the average symbol will be used to plot
the response time. For example:
TIME 0900-0905
REPORT TERM=(TGRAPH)
TGRAPH INTERVAL=10,ORIGIN=5,INCR=1
RUN
END

The time graph routine will accumulate the minimum, average, and maximum
response times over 30 ten-second intervals. The range of the plotted response
times will be from 5 to 15 seconds in tenths-of-second increments.

You can control when the time graphs are printed by using the REPORT command
and the REPORT operand on the VTAMAPPL, APPCLU, TCPIP, or TERM
commands.

Running the Response Time Utility
The Response Time Utility requires information about how you want to calculate
the response time statistics. You supply this information by using control
commands entered from an input file or the console. The JCL or TSO CLIST you
use to run the Response Time Utility provides the following locations:
v Log data set
v Control command input file
v Response Time Utility program
v The printer.

The following sections describe more information about the Response Time Utility:
v Response time calculations for devices
v Response time calculations for transactions
v Virtual storage estimation
v Execution parameters
v Examples of JCL and a TSO CLIST
v Output generated by a sample control command file

Note: The Response Time Utility allows user routines to gain control and perform
any desired functions using the log records with the EXIT command. If you do not
code a user exit with the EXIT command, the WSim-supplied exit routine processes
the log records and calculates the values for the standard output reports according
to the previously defined rules. If you do code a user exit with the EXIT command,
it receives control for each log record that satisfies the input command
specifications. For more information about user exit routines for the Response Time
Utility, refer to WSim User Exits.

Calculating response times for terminals
The Response Time Utility calculates response times for each terminal by
computing the difference between a time stamp from a record transmitted by the
terminal and a time stamp from a record received by the terminal. Three time
stamps are associated with each record and are identified as START, STOP, and
READY. For information about how these time stamps are set, see “How messages
are time stamped” on page 164.

Chapter 8. Using the Response Time Utility to analyze response times 113

Rules for calculating response times
The rules for calculating a response time are determined by one of the following
input commands:

PROCESS SYSTEM
The response time is the difference between the time when WSim sent the
last byte of a transmission and when WSim received the first byte of data
from the system under test (receive record START time stamp minus
transmit record STOP time stamp). If multiple records are transmitted
without receiving a record, the last transmit record is used in making the
response calculation. Specifying PROCESS=SYSTEM is the equivalent of
specifying BTRANS with MATCH=LAST, RECORD=XMIT, and
TIME=STOP; and ETRANS with MATCH=FIRST, RECORD=RECV, and
TIME=START.

PROCESS ACTUAL
For nonbuffered terminals, the response time is the difference between the
time WSim is able to send a message and the time that the last data
character is received by the WSim host processor (receive record READY
time stamp minus the transmit record READY time stamp). The receive
record used is the last message received by the terminal before the next
transmit message.

For SNA devices, the receive READY time stamp is taken from the record
that is the last-in-chain RU of the last receive chain before the next transmit
chain. For other buffered terminals, the receive READY time stamp is taken
from the last receive record before the next transmit record. Specifying
PROCESS=ACTUAL is the equivalent of specifying BTRANS with
MATCH=FIRST, RECORD=XMIT, and TIME=READY; and ETRANS with
MATCH=LAST, RECORD=RECV, and TIME=READY.

Refer to “Calculating response times for transactions” on page 115 for
information about how the Response Time Utility calculates response times
for user-defined transactions.

Response time accuracy
All response times will be computed to the accuracy afforded by the clocks from
which the WSim time stamps are obtained.

Note: You can use the TRUNC command to specify that all time stamps are to be
truncated to tenths of seconds before performing any calculations.

Device dependencies
The messages used to compute response times depend on the following devices:

SNA Terminals
By default, all SNA control commands, such as data flow control, network
control, and session control, and all SNA responses will be discarded by
the Response Time Utility. Only request units of the function management
class (FM data RUs) will be considered as valid messages for computing
response times. It is possible, however, to override this default if
transaction processing is being performed (at least one BTRANS command
is specified). For more information, refer to the SNA operand descriptions
on the BTRANS and ETRANS commands.

3270 Terminals
For 3270 terminals, you can use the UNLOCK command to specify
whether or not 3270 keyboard unlock messages are to be considered as
valid data messages. For basic support 3270 devices, a keyboard unlock

114 WSim V1R1 Utilities Guide

message is defined to be a 2-byte message (discounting the BSC escape
character) consisting of a write command (X'F1' or X'F5') followed by a
write control character (WCC) with the keyboard restore bit on. For 3270
devices with extended function support, a keyboard unlock message can be
contained within an outbound 3270 data stream Write Structured Field.

Note: The UNLOCK command is ignored when doing transaction
processing.

5250 Display Devices
A response time for a 5250 display device will begin when the terminal
transmits the first RU of a chain. The response time will end when the last
RU of a chain is received, provided that a write to display (WTD)
command (X'0411') that unlocks the keyboard appears somewhere in the
chain. Each RU of the received chain will be scanned for the WTD
command, but the scan will not detect a WTD command that is split
between two RUs. These rules are followed only if PROCESS ACTUAL is
specified and user-defined transactions are not specified.

Calculating response times for transactions
Using the Response Time Utility transaction processing, you can specify the
messages that delimit logical transactions for computing response times. A
transaction for a terminal is defined to be a user-specified pair of delimiting
records, where any number of messages can be transmitted or received between
the delimiting records. You can designate a transaction to begin or end with any
record transmitted or received by a terminal. Using transaction definitions, the
following types of times can be measured:
v Terminal response time (XMIT --> RECV)
v WSim processing time (RECV --> XMIT)
v Delay time (XMIT --> XMIT, RECV --> RECV)
v Event interval time (any combination).

Transaction processing
Transaction processing is indicated to the Response Time Utility by specifying
BTRANS (Begin Transaction) commands and, optionally, ETRANS (End
Transaction) commands. The BTRANS command defines the beginning of a
transaction for a terminal and ETRANS defines the end. When you define
transactions to the Response Time Utility, you must use a BTRANS command,
which can be followed by one or more ETRANS commands to define the possible
endings. The BTRANS and ETRANS commands used to define a single transaction
can be separated in the input data set by other valid Response Time Utility
commands. If a BTRANS command is not followed by an ETRANS command (for
example, another BTRANS or a RUN command is encountered before an ETRANS
command), the Response Time Utility automatically ends the transaction response
time according to the option specified on the PROCESS command.

As with other commands, the BTRANS and ETRANS commands are valid only
during the processing run in which they are specified. The maximum number of
transaction types that can be specified in any one run is defined by the TRAN
parameter on the Response Time Utility EXEC statement, with a default of 10. For
a single processing run, response times are accumulated according to transaction
types. Each terminal, terminal group, or summary RESPBLK contains a pointer to a
chain of RESPBLKs, one for each of the transaction types. The response times are
recorded individually by transaction type. The WSim output reports reference the
transaction types by name, as specified by the TYPE operand on the BTRANS

Chapter 8. Using the Response Time Utility to analyze response times 115

command. If multiple BTRANS commands specify the same name for the TYPE
operand, the response times for all of those transactions will be grouped into a
single report.

If a syntax error occurs on a BTRANS or ETRANS command, that entire
transaction definition is discarded. The Response Time Utility then sets up to begin
a new specification (for example, a BTRANS command is expected next after an
error).

Note: The UNLOCK command is ignored when doing transaction processing.

The order of BTRANS and ETRANS commands: The order in which the BTRANS
and ETRANS pairs are specified is important. The Response Time Utility locates
the beginning record of a transaction for a terminal by comparing transmitted and
received records with the BTRANS specifications in the order in which the
BTRANS commands appeared in the input data set. If a message could satisfy
more than one BTRANS specification, the transaction type is determined by the
first BTRANS command entered. Similarly, if a message could satisfy more than
one ETRANS specification, the record is taken to be the end of the transaction type
specified by the first ETRANS command entered, provided that the corresponding
BTRANS specification was previously satisfied.

All specified transaction types are considered for each terminal in the analysis.
Once a record has been found that satisfies a BTRANS specification for a terminal,
all subsequent qualifying records for that terminal are ignored for that particular
BTRANS specification until a record is found that satisfies a corresponding
ETRANS specification. However, all qualifying records continue to be considered
for beginning other available transaction types for the terminal.

BTRANS and ETRANS operands: The BTRANS and ETRANS TEXT operands
specify characters to be compared with data in the data portions only of the log
records. The header of a log record is not considered during the data scan function
of transaction processing.

Response times are computed using the time stamps specified by the BTRANS and
ETRANS TIME operands. If transactions are specified by BTRANS commands only,
the response times are calculated from the time stamp specified by the BTRANS
TIME operand to the receive time stamp specified by the nontransaction rules
(PROCESS SYSTEM or ACTUAL).

Transaction processing examples
The following examples explain some of the details of transaction processing.

Example 1:
TERM TR3270
BTRANS TEXT=(LOGON),SCAN=YES,TYPE=LOGON,TIME=STOP,

RECORD=XMIT
ETRANS TEXT=(READY),LENG=5,LOC=6,SCAN=YES
BTRANS LOG=C1,TYPE=LOGBYTE
ETRANS LOG=B
RUN
END

The first BTRANS command searches transmit records for the characters LOGON.
The entire data portion of each transmit log record is scanned. When a match is
found, the transmit STOP time stamp is saved. Next, receive records are scanned
for the characters READY. Only receive records are scanned because the RECORD

116 WSim V1R1 Utilities Guide

operand value defaults to RECV for ETRANS specifications. Only records having
at least five data characters are considered; the scan begins with the sixth data
character and continues to the end of the record. When a match is found, the
READY time stamp is used with the saved transmit time stamp to compute a
response time.

If a transmit record does not contain the characters LOGON or a LOGON type of
transaction has been started but not ended, the user data byte in the log record
header is compared with the character A (X'C1'). If a match occurs, the record is
taken as the beginning record of this second transaction type. Subsequent receive
records are inspected for the character B (X'C2') in the user data byte of the log
record header.

The response times of both transaction types are accumulated and reported
separately for the terminal TR3270.

Example 2:
BTRANS LOC=3,SCAN=25,TEXT=(TIME),

TYPE=00000001,RECORD=RECV
ETRANS LOG=FF,TEXT=(READY)
RUN
END

The responses for the transaction type defined by the BTRANS/ETRANS pair are
accumulated for all terminals represented on the log data set. The BTRANS
command causes a scan of all receive records for the characters TIME beginning
with the third data byte of the log record. A maximum of 25 comparisons of length
four will be performed on the record, with each comparison beginning at the next
consecutive byte. After the beginning transaction record has been found, the
ETRANS specifications are used to locate the ending transaction record. If a receive
record has X'FF' in the user-data byte of the log header, the record is taken as the
end of the transaction regardless of the data portion of the record. If the user data
byte is not X'FF', a single comparison for the characters READY is made starting
with the first data byte in the record.

Example 3:
BTRANS TEXT=(LOGON),TYPE=LOGON
BTRANS TEXT=(EDIT),TYPE=EDIT
BTRANS TEXT=(TOP),TYPE=EDIT
BTRANS TEXT=(SAVE),TYPE=EDIT
BTRANS TEXT=(TIME),TYPE=TIME
ETRANS TEXT=(READY),SCAN=YES
BTRANS TEXT=(LOGOFF),TYPE=LOGOFF
T TR3270,REPORT=(LIST,TRANS,TGRAPH)
RUN
END

The defined transaction types are processed for the terminal TR3270. For this
terminal, a listing of the log records, a response time report for each transaction
type, and a time graph will be printed. A single response time begins when the
terminal transmits the characters specified in one of the BTRANS commands. The
TYPE=TIME transaction response time is ended when the characters READY are
received. Any other transaction type response time is ended when the terminal
receives any message. The response times computed according to the BTRANS
commands with TYPE=EDIT will be accumulated in a single output report.

Example 4: Consider the following sequence of transmissions:

Chapter 8. Using the Response Time Utility to analyze response times 117

"UPDATE"
───→

"CONFLICT - UPDATE NOT PERFORMED"
←───

Simulated System
Device "UPDATE" Under Test

───→
"UPDATE COMPLETE"

←───

The following BTRANS and ETRANS pair causes a transaction to begin when the
first UPDATE is transmitted by the simulated device and end when the UPDATE
COMPLETE message is received.
BTRANS TYPE=SUCCESS,TEXT=(UPDATE),MATCH=FIRST
ETRANS TEXT=(UPDATE COMPLETE)

Contrast the above specification with the following BTRANS and ETRANS pair.
With these commands, the transaction SUCCESS begins with the second UPDATE
transmitted by the simulated device and ends when the UPDATE COMPLETE
message is received.
BTRANS TYPE=SUCCESS,TEXT=(UPDATE),MATCH=LAST
ETRANS TEXT=(UPDATE COMPLETE)

Example 5:
BTRANS TEXT=(UPDATE),TYPE=UPDATE
ETRANS TEXT=(UPDATE COMPLETE)
ETRANS TEXT=(CONFLICT)
RUN
END

This example uses multiple ETRANS commands for a single BTRANS command.
The responses for the transaction defined by these commands accumulates for all
terminals represented on the log data set. A transmitted record containing the
characters UPDATE signals the beginning of transaction UPDATE for a terminal.
The receipt of either a record containing the characters UPDATE COMPLETE or a
record containing the characters CONFLICT signals the end of the transaction.
Therefore, for the sequence of transmissions above, the transaction UPDATE begins
with the first UPDATE transmitted by the simulated device and ends when the
CONFLICT - UPDATE NOT PERFORMED message is received.

Estimating virtual storage
The amount of storage necessary to run the Response Time Utility varies
considerably, depending on the number of lines and terminals included, the
amount of transaction processing performed (specification of BTRANS and
ETRANS commands), the number of graphs generated, the length of the run being
analyzed, and the message traffic rates for the run. However, you should have
ample storage if you run the Response Time Utility in the same region size that
you used to run WSim. If for some reason this is not possible, the following
recommendations will help to minimize the storage requirements:
1. Make several smaller runs of the Response Time Utility, instead of one large

run. Specify a subset of the lines and terminals to be included in each.
2. Specify the smallest possible value for the TRAN execution parameter.
3. Specify a small value for the RESP execution parameter.
4. Use several runs to generate the graphs.
5. Run the Response Time Utility only for the time interval in which you are

interested.

118 WSim V1R1 Utilities Guide

Using the WSim/ISPF Interface
You can run the Response Time Utility from the WSim/ISPF Interface. To do this,
follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 8 from the WSim/ISPF Interface main panel and press Enter. The
Analyze Response Times panel is displayed.

Note: You can also type “RESPONSE” on the command line and press Enter to
display this panel.

3. Fill in the appropriate information on this panel and press Enter to run the
Response Time Utility.

For more information on the WSim/ISPF Interface, see Chapter 2, “Running WSim
with the WSim/ISPF Interface,” on page 5.

Using Response Time Utility execution parameters
You can enter the following parameters in the PARM field of the JCL EXEC
statement or the TSO CLIST CALL statement when you run the Response Time
Utility.

CONSOLE
Specifies that a WTOR is issued to the WSim operator console for the input
control commands. If CONSOLE is not specified, the control commands are
read from the SYSIN data set.

LIST
Specifies the inclusion of the response listing file. Refer to “Response listing
file” on page 111 for information about the response listing file.

LISTX
Specifies the inclusion of the extended response listing file that can be
processed by the SLR using user-defined SLR Adaptable Log Layout (ALL) log
tables. Refer to “Response listing file” on page 111 for information about the
response listing file.

NOLIST
Specifies the exclusion of the response listing file. NOLIST is the default.

PRTLNCNT=nnn
Specifies the maximum number of lines to be printed on a page of output
before ejecting to a new page where nnn is an integer from 35 to 255. The
default value for PRTLNCNT is 60.

RESP=integer
Specifies the initial number of unique responses that can be saved in a single
response time table where integer is from 1 to 9999 with a default value of 50.
The value you specify for RESP will be used to allocate the first response time
table for each terminal, for each line or node, and for the summary table. The
size of a response time table will be dynamically increased in increments of 100
unique response times (800 bytes) as needed during the run. To minimize
storage requirements, you should code a value for RESP that is equal to the
least number of expected response times for any terminal in the analysis.

ROUTCDE=(n,n,...)
Specifies the message routing codes to be used in writing Response Time

Chapter 8. Using the Response Time Utility to analyze response times 119

|

Utility messages to the operator where each n specifies a system routing code
that defines a console destination for all WTOs and WTORs written by the
Response Time Utility. Each n is an integer from 1 to 16. The default
ROUTCDE is 8.

TRAN=integer
Specifies the maximum number of response transaction types allowed for each
run, where integer is from 1 to 999 with a default value of 10. One transaction
type will be defined by a pair of BTRANS and ETRANS statements.

Using JCL
The following JCL statements are required to run the Response Time Utility on
MVS.

Statement Function

JOB Initiates the job.

JOBLIB DD Defines the data set containing the WSim host processor modules.

EXEC Specifies the program name.

SYSPRINT DD Defines the output printer.

LISTDD DD Defines the response listing file (optional).

SYSUT1 DD Defines the log data set input file. The SYSUT1 DD statement contains an
optional BLKSIZE parameter defining the maximum block size for the
input data. If you specify this value, it should agree with the BLKSIZE
parameter on the LOGDD DD statement from the WSim execution JCL
that created the data set. If you do not specify a BLKSIZE parameter, the
value is taken from the LOGDD data set if:

1. It is on a labelled tape and it is not overridden with the JCL (by way
of ALLOC)

2. It is on a disk data set and it is not overridden with the JCL (by way
of ALLOC).

SYSIN DD Defines the control command input file.

If a user exit routine is specified with the EXIT command, concatenate the library
containing the user exit and the WSim load module library on the JOBLIB DD
statement.

The following example shows the JCL that you can use to run the Response Time
Utility when the log data set is on tape.
//RESPJOB1 JOB
//JOBLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
// DD DSN=USER.LOAD,DISP=SHR
//GO EXEC PGM=ITPRESP,PARM=’RESP=12,TRAN=14,LIST’
//SYSPRINT DD SYSOUT=A
//LISTDD DD DSN=RESPLIST,UNIT=3380,VOL=SER=USERPK,
// DISP=(,KEEP),SPACE=(CYL,(2)),
// DCB=(LRECL=80,BLKSIZE=80)
//* MESSAGE LOGGING INPUT DATA SET ON TAPE
//SYSUT1 DD UNIT=TAPE,VOL=SER=LOGTAP,LABEL=(,NL),DISP=OLD
//SYSIN DD *

VTAMAPPL VAPPL1
TERM APPL1
TERM APPL2
BTRANS TEXT=(TIME),SCAN=YES,TYPE=TIME
ETRANS TEXT=(READY),SCAN=YES
BTRANS LOG=01,TYPE=LOGBYTE
ETRANS LOG=02
TIME 0039-0041
RUN

120 WSim V1R1 Utilities Guide

PROCESS ACTUAL
TIME 0044-0048
EXIT EXITMOD
RUN
END

/*

The following example shows the JCL that you can use when the log data set is on
disk.
//RESPJOB2 JOB
//JOBLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
// DD DSN=USER.LOAD,DISP=SHR
//GO EXEC PGM=ITPRESP,PARM=’RESP=12,TRAN=14,LIST’
//SYSPRINT DD SYSOUT=A
//LISTDD DD DSN=RESPLIST,UNIT=3380,VOL=SER=USERPK,
// DISP=(,KEEP),SPACE=(CYL,(2)),
// DCB=(LRECL=160,BLKSIZE=160)
//* MESSAGE LOGGING INPUT DATA SET ON DISK
//SYSUT1 DD DSN=WSIM.MSGLOG,DISP=SHR
//SYSIN DD *

VTAMAPPL VAPPL1
TERM APPL1
TERM APPL2
VTAMAPPL VAPPL2
BTRANS TEXT=(TIME),SCAN=YES,TYPE=TIME
ETRANS TEXT=(READY),SCAN=YES
BTRANS LOG=01,TYPE=LOGBYTE
ETRANS LOG=02
TIME 0039-0041
RUN
PROCESS ACTUAL
TIME 0044-0048
RUN
END

/*

In the preceding example, each RESPBLK is initially allocated with space to
accumulate 10 unique response times. This space allocation will be dynamically
increased if more than 10 unique response times are computed. Each set of input
commands can contain a maximum of two transaction type specifications.

Two passes are made through the log data set. On the first pass, the analysis is
made for the two VTAMAPPLs, with APPL1 and APPL2 being the only logical
units processed for line VTAMAPPL VAPPL1. Response times are calculated
according to the two transaction types specified by the BTRANS and ETRANS
pairs. The second pass uses the second set of time limits without rewinding the
tape, and processes all terminals and devices on lines 010022 and 010023.

Using a TSO CLIST
The following example shows a CLIST to run the Response Time Utility under
TSO.
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(SYSUT1) DSNAME(’WSIM.LOGDATA’) SHR
ALLOC DDNAME(SYSIN) DSNAME(’USER.RSPCMNDS.DATA’)
CALL ’WSIM.SITPLOAD(ITPRESP)’ ’RESP=50’
FREE DDNAME(SYSPRINT)
FREE DDNAME(SYSUT1)
FREE DDNAME(SYSIN)

Chapter 8. Using the Response Time Utility to analyze response times 121

Understanding sample output
The following pages contain some examples of the output created when you use
the WSim/ISPF Interface, JCL or a TSO CLIST to run the Response Time Utility
with the input command file shown in Figure 28. Figure 29 on page 123 through
Figure 33 on page 127 show the examples.

*
* SPECIFY RUN PARAMETERS
*
HEADER TRANSACTION TEST
TIME ALL
REPORT LEVEL=TERM,

TERM=(LIST,GRAPH,CGRAPH,TGRAPH,TRANS),
SUMMARY=(NOLIST,GRAPH,CGRAPH,TGRAPH,NOTRANS)

TPRINT YES
TRUNC YES
TGRAPH ORIGIN=0,INCR=1,INTERVAL=30
GRAPH 2
CGRAPH 2
PERCENT 10,20,30,40,50,60,70,80,90,95
*
* DEFINE TRANSACTION
*
BTRANS TYPE=ONLY,

TEXT=(SECONDARY MESSAGE),
MATCH=FIRST,
LENG=1,
SCAN=YES

ETRANS TEXT=(PRIMARY MESSAGE),
SCAN=YES

*
* DEFINE RESOURCES TO BE SELECTED AND
* THEIR OUTPUT OPTIONS
*
NTWRK SAMPNET
VTAMAPPL VAPPL1
TERM DEVLU2X
VTAMAPPL VAPPL2
TERM DEVLU2

*
RUN
END

Figure 28. Example of input commands for the Response Time Utility

122 WSim V1R1 Utilities Guide

--
TERMINAL REPORT NETWORK SAMPNET PROCESS SYSTEM TIME LIMITS ALL TRANSACTION ONLY

VTAMAPPL VAPPL1 EXIT START TIME 094105
TERMINAL DEVLU2X TERMTYPE LU2 END TIME 100448

--

RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT
0.00 25 0.10 27 0.20 27 0.30 13 0.40 10
0.50 8 0.60 3 0.70 1 0.80 6 0.90 7
1.00 3 1.10 5 1.20 4 1.30 6 1.40 10
1.50 5 1.60 4 1.70 2 1.80 1 1.90 1
2.00 1 2.10 5 2.20 2 2.30 3 2.40 1
2.50 1 2.60 4 2.70 4 2.80 3 2.90 6
3.00 6 3.10 4 3.20 3 3.30 3 3.40 5
3.50 3 3.60 7 3.70 4 3.80 4 3.90 2
4.00 4 4.10 5 4.20 1 4.30 2 4.40 3
4.50 2 4.60 3 4.70 1 4.80 4 4.90 3
5.00 5 5.10 2 5.20 4 5.30 2 5.40 5
5.50 1 5.60 2 5.70 1 5.80 1 5.90 1
6.00 1 6.20 2 6.30 1 6.40 2 7.30 1
8.40 1 9.30 1 20.90 1

MEAN RESPONSE 2.12 MESSAGES SENT 304 NUMBER OF RESPONSES 301
MEDIAN RESPONSE 1.40 AVERAGE LENGTH 1,768 PER MINUTE 12
MODE RESPONSE -- PER MINUTE 13 RESPONSES DISCARDED 0
LOW RESPONSE 0.00 MESSAGES RECEIVED 433 VARIANCE 5.0773
HIGH RESPONSE 20.90 AVERAGE LENGTH 400 95 PERCENT CI (1.87,2.38)
AVERAGE QUEUE TIME 0.24 PER MINUTE 19

PERCENTILE RESPONSE TIME AVERAGE
10 0.10 0.01
20 0.20 0.07
30 0.30 0.12
40 0.80 0.22
50 1.40 0.41
60 2.50 0.65
70 3.20 0.97
80 4.00 1.30
90 5.00 1.65
95 5.50 1.84

Figure 29. The Response Time Utility Terminal Report

Chapter 8. Using the Response Time Utility to analyze response times 123

LISTING OF TRANSACTION RECORDS

APPCLU/TCPIP/ DEV/LU/TP TYPE STATUS LOG RECORD DATA USER START STOP READY
VTAMAPPL NAME DATA TIME TIME TIME

NAME
VAPPL2 DEVLU2 RECV 5CSTART SENDING 00 09405770 09405770 09405770
VAPPL2 DEVLU2 XMIT B-ONLY ’CH00001 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09405790 09405790 09405770
VAPPL2 DEVLU2 RECV E-ONLY 5C00001 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09410150 09410150 09410150
VAPPL2 DEVLU2 XMIT B-ONLY ’CH00002 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09410320 09410320 09410300
VAPPL2 DEVLU2 RECV E-ONLY 5C00002 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09410850 09410850 09410850
VAPPL1 DEVLU2X RECV 5CSTART SENDING 00 09411250 09411250 09411250
VAPPL2 DEVLU2 XMIT B-ONLY ’CH00003 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09411300 09411300 09411260
VAPPL1 DEVLU2X XMIT B-ONLY ’CH00001 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09411300 09411300 09411260
VAPPL1 DEVLU2X RECV E-ONLY 5C00001 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09411820 09411820 09411820
VAPPL2 DEVLU2 RECV E-ONLY 5C00003 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09411820 09411820 09411820
VAPPL1 DEVLU2X XMIT B-ONLY ’CH00002 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09411980 09411980 09411980
VAPPL2 DEVLU2 XMIT B-ONLY ’CH00004 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09411980 09411980 09411980
VAPPL1 DEVLU2X RECV E-ONLY 5C00002 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09411980 09411980 09411980
VAPPL1 DEVLU2X XMIT B-ONLY ’CH00003 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09412160 09412160 09412150
VAPPL1 DEVLU2X RECV E-ONLY 5C00003 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09412180 09412180 09412180
VAPPL1 DEVLU2X XMIT B-ONLY ’CH00004 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09412390 09412390 09412380
VAPPL2 DEVLU2 RECV E-ONLY 5C00004 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09412390 09412390 09412390
VAPPL1 DEVLU2X RECV E-ONLY 5C00004 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09412400 09412400 09412400
VAPPL1 DEVLU2X XMIT B-ONLY ’CH00005 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09412580 09412580 09412560
VAPPL2 DEVLU2 XMIT B-ONLY ’CH00005 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09412580 09412580 09412560
VAPPL2 DEVLU2 RECV E-ONLY 5C00005 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09412580 09412580 09412580
VAPPL1 DEVLU2X RECV E-ONLY 5C00005 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09412580 09412580 09412580
VAPPL2 DEVLU2 XMIT B-ONLY ’CH00006 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09412840 09412840 09412840
VAPPL1 DEVLU2X XMIT B-ONLY ’CH00006 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09412840 09412840 09412820
VAPPL2 DEVLU2 RECV E-ONLY 5C00006 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09412840 09412840 09412840
VAPPL1 DEVLU2X RECV E-ONLY 5C00006 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09413090 09413090 09413090
VAPPL2 DEVLU2 XMIT B-ONLY ’CH00007 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09413090 09413090 09413090
VAPPL2 DEVLU2 RECV E-ONLY 5C00007 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09413100 09413100 09413100
VAPPL1 DEVLU2X XMIT B-ONLY ’CH00007 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09413230 09413230 09413230
VAPPL2 DEVLU2 XMIT B-ONLY ’CH00008 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09413230 09413230 09413230
VAPPL1 DEVLU2X RECV E-ONLY 5C00007 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09413240 09413240 09413240
VAPPL1 DEVLU2X XMIT B-ONLY ’CH00008 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09413600 09413600 09413600
VAPPL2 DEVLU2 RECV E-ONLY 5C00008 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09413600 09413600 09413600
VAPPL1 DEVLU2X RECV E-ONLY 5C00008 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09413730 09413730 09413730
VAPPL2 DEVLU2 XMIT B-ONLY ’CH00009 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09414060 09414060 09414060
VAPPL1 DEVLU2X XMIT B-ONLY ’CH00009 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09414060 09414060 09414060
VAPPL2 DEVLU2 RECV E-ONLY 5C00009 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09414070 09414070 09414070
VAPPL1 DEVLU2X RECV E-ONLY 5C00009 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09414070 09414070 09414070
VAPPL1 DEVLU2X XMIT B-ONLY ’CH00010 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09414400 09414400 09414400
VAPPL2 DEVLU2 XMIT B-ONLY ’CH00010 >>> SECONDARY MESSAGEABCDEFGHIJKLMNOPQRST 00 09414400 09414400 09414390
VAPPL2 DEVLU2 RECV E-ONLY 5C00010 <<< PRIMARY MESSAGEABCDEFGHIJKLMNOPQRSTUVW 00 09414400 09414400 09414400

Figure 30. The Response Time Utility Listing of Transaction Records

124 WSim V1R1 Utilities Guide

RESPONSE TIME FREQUENCY DISTRIBUTION

NETWORK SAMPNET 80 |--|
VTAMAPPL VAPPL1 | |
TERMINAL DEVLU2X | |
TRANSACT ONLY | |

| |
70 |--|

| |
| |
| |
| |

60 |--|
| |
| |
| |
| |

PERCENTAGE 50 |--|
| |

OF | |
| |

RESPONSES | |
40 |--|

| |
| |
| |
| |

30 |--|
| |
| |
| |
| |

20 |--|
| * |
| * |
| * |
| * |

10 |-----*--|
| * * * |
| * * * * |
| * * * * * * * * |
| * |
──

| + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + +
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

RESPONSE TIME (SECONDS) INCREMENT = 0.2 SECONDS
PERCENTAGE ABOVE LAST INCREMENT = 0.3

Figure 31. The Response Time Utility Response Time Frequency Distribution

Chapter 8. Using the Response Time Utility to analyze response times 125

NETWORK SAMPNET
CUMULATIVE RESPONSE TIME DISTRIBUTION

VTAMAPPL VAPPL1 100|--*-*-*-*-*-*-*-*-*-*-*-*-*---|
TERMINAL DEVLU2X | * * * * * * * | |
TRANSACT ONLY | * * | | |

| * | | | |
| * | | | | |

90|-- -*-|-|-|---|-------------|---------------------------|
*									
*									
*									
*									

80|--*-|-|-|-|-|-|-|-|---|-------------|---------------------------|
*													
*													
*													

70|----------------------------------*-|-|-|-|-|-|-|-|-|-|-|-|---|-------------|---------------------------|
*																	
*																	
*																	

60|--------------------------*-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|---|-------------|---------------------------|
*																					
* *																					
*																					

PERCENTAGE | * |
OF 50|----------------|-|-|---|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|---|-------------|---------------------------|

RESPONSES |
*																									
*																									

40|----------*-|-|-|-|-|---|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|---|-------------|---------------------------|
*																												
*																												

30|------|-|-|-|-|-|-|-|---|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|---|-------------|---------------------------|
*																													

20|----|-|-|-|-|-|-|-|-|---|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|---|-------------|---------------------------|

10|----|-|-|-|-|-|-|-|-|---|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|---|-------------|---------------------------|
*																														
──																														
+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +																					

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
RESPONSE TIME (SECONDS) INCREMENT = 0.2 SECONDS

Figure 32. The Response Time Utility Cumulative Response Time Distribution

126 WSim V1R1 Utilities Guide

Understanding Response Time Utility return codes
The only return code the Response Time Utility sets is 0, meaning response times
are logged as specified.

NETWORK SAMPNET TIME GRAPH OF RESPONSES
VTAMAPPL VAPPL1 < MINIMUM
TERMINAL DEVLU2X INTERVAL = 30 SEC * AVERAGE
TRANSACT ONLY INCREMENT= 0.1 SEC > MAXIMUM

RESPONSE TIME (SECONDS)
| |

TIME NUMBER OF | 1|
RESPONSES |0----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0|

9.40.30 0 | |
9.41.00 0 | |
9.41.30 5 |<------------*--> |
9.42.00 8 | <------------*--------------> |
9.42.30 3 | <---*---------------------------->
9.43.00 8 | <----------*--------------------------> |
9.43.30 6 |<---------------*----------------------> |
9.44.00 4 |<--------------------------*-----------------------> |
9.44.30 6 | <----------------------------------*------------------------> |
9.45.00 6 |<------------------*-----------------------> |
9.45.30 6 | <-------------------------*--------------------------> |
9.46.00 7 | <------------*-----------------------------------> |
9.46.30 6 |<--------*-------> |
9.47.00 5 |<----------*-------------------> |
9.47.30 6 |<----------------------------------*---> |
9.48.00 6 | <----------------*---------------------------> |
9.48.30 7 |<-----------------------*-------------------------------------> |
9.49.00 5 | <-------------------*----------------------------------> |
9.49.30 8 |<---------------------*--> |
9.50.00 8 |<-------*--------------------> |
9.50.30 8 |<-----------------*-----------------------> |
9.51.00 8 |<----------------*---------------------------------> |
9.51.30 4 |<-*--> |
9.52.00 0 | |
9.52.30 7 | <------------*-------------------------> |
9.53.00 7 | <-----------*---------------------> |
9.53.30 6 | <----------------------------*---------------------------------> |
9.54.00 7 | <-----------------*------------------------------> |
9.54.30 8 | <-----------------*----------------------------------> |
9.55.00 5 | <---------------------------*-------------------------> |
9.55.30 6 |<------------------------------------*-------------> |
9.56.00 8 | <------------------*---------------------------------------> |
9.56.30 6 | <--------------------------*-------------------------> |
9.57.00 5 | <---------------*------------------> |
9.57.30 7 | <---------------------*-------------------------> |
9.58.00 6 | <--------------------------*-------------------------> |
9.58.30 9 | <-----------*--------------------> |
9.59.00 9 |<-----------*----------------> |
9.59.30 6 | <-------------------*------------------------------> |
10.00.00 5 | <----------------------------------*----------------------> |
10.00.30 7 |<----------------*-----------------------> |
10.01.00 5 | <--------------------------------*---> |
10.01.30 6 |<------------------------------*-------------------------------> |
10.02.00 7 |<---------------*-------------------------------> |
10.02.30 7 | <------------*-----------------------------> |
10.03.00 5 | <------------------*--------------------------------> |
10.03.30 6 | <-------------------*-----------------------> |
10.04.00 7 |<-----------------------*-----------------------------> |

| ----+----|----+----|----+----|----+----|----+----|----+----|----+----|----+----|----+----|----+---- |

Figure 33. The Response Time Utility Time Graph of Responses

Chapter 8. Using the Response Time Utility to analyze response times 127

128 WSim V1R1 Utilities Guide

Chapter 9. Specifying Response Time Utility control
commands

The Response Time Utility control commands determine what time limits to use
for the analysis, which lines and terminals to evaluate, how to compute response
times, and how to generate the output reports.

The RUN command indicates the end of a set of input commands. It causes the
Response Time Utility to process the log data set records according to your
specifications. You can specify multiple sets of input commands, each set ending
with a RUN command, which causes the Response Time Utility to process the log
data set more than once. The Response Time Utility lists each group of input
commands ending with a RUN command in the Response Time Utility output
before generating the reports according to those commands.

Some commands, if specified more than once before a RUN command, replace
their previous values, and the run proceeds according to the latest values for the
commands. In addition, the default values for these commands are used in a run,
even if you do not specify the commands. The following commands replace their
previous values:
v CGRAPH
v HEADER
v PERCENT
v TGRAPH
v TRUNC
v EXIT
v LENGTH
v PROCESS
v TIME
v UNLOCK
v GRAPH
v NTWRK
v REPORT
v TPRINT

The effects of the following commands, if specified more than once before a RUN
command, are cumulative (values specified later do not override previous values):
v BTRANS
v ETRANS
v MSGTXT
v VTAMAPPL
v APPCLU
v TCPIP
v TERM
v EXTERM

© Copyright IBM Corp. 1985, 2015 129

The following sections provide an explanation of the control commands and
operands you can use to operate the Response Time Utility. To help you use this
information, they also explain the requirements to enter the coding and the coding
conventions for control commands.

Coding the control commands
You can enter a command in any position of the input record. Operands cannot
extend past column 71, and they cannot be continued. Although you can separate a
command and its operand by more than one blank space, you must enter at least
one blank space between the command and its operand.

You can abbreviate some of the Response Time Utility control commands to a
single letter. For example,
T APPL1

is equivalent to
TERM APPL1

Note that the allowable abbreviations for the commands are listed underneath the
full command keyword. You can code either the full keyword or the abbreviation.

You must code all control commands in uppercase when using the control
command input file.

Understanding control command conventions
The control commands for the Response Time Utility use the same coding
conventions as the Loglist Utility commands. Refer to “Understanding control
command coding conventions” on page 45 for information about the coding
conventions.

APPCLU—Define an APPC LU for response time analysis

APPCLU name
[,REPORT=(option1[,option2[,...]])]

A name
[,REPORT=(option1[,option2[,...]])]

The APPCLU command specifies the name of an APPC LU for which a response
time analysis will be done. It also defines the output options to be used when
printing reports for the APPCLU.

If you code any VTAMAPPL, APPCLU or TCPIP commands, only those VTAM
applications, APPC LUs and TCP/IP connections, will be included in the response
time analysis. If you do not code any VTAMAPPL, APPCLU or TCPIP commands,
all VTAM applications, APPC LUs and TCP/IP connections encountered on the log
data set during the defined time interval will be processed.

name
Function: The name operand specifies the APPC LU name for which response
time analysis is to be done.

130 WSim V1R1 Utilities Guide

Format: The value of the name operand can be any 1- to 8-character APPCLU
name.

Default: None. This operand is required.

REPORT=(option1[,option2[,...]])
Function: The REPORT operand specifies the output report options for this
APPC LU.

Note: Any options specified in this operand override the corresponding
options specified in the TERMGRP operand of the REPORT command. This
operand is ignored if LEVEL=SUMMARY is specified on the REPORT
command.

Format: For the REPORT operand, you can code one or more option keywords
within the parentheses in any order. For more information on the valid option
keywords, refer to the TERM operand of the REPORT command.

Default: This operand is optional. If it is omitted, the output options for this
APPCLU will be taken from the TERMGRP operand of the REPORT command.

BTRANS—Begin transaction definition

BTRANS TYPE=name
[,LENG={integer|1}]
[,LOC={TH+n|RH+n|RU+n|integer|1}]
[,LOG=byte]
[,MATCH={FIRST|LAST}]
[,RECORD={XMIT|RECV}]
[,SCAN={YES|integer|1}]
[,SNA={YES|NO}]
[,TEXT={(data)|’xx’}]
[,TIME={READY|START|STOP}]

The BTRANS command defines the characteristics of a transmit or receive record
that will make the record the beginning of a logical transaction for a terminal.

TYPE=name
Function: The TYPE operand specifies the name that is used to identify the
transaction type being defined.

Format: The value of name can be from 1 to 8 nonblank characters.

Default: None. This operand is required.

LENG={integer|1}
Function: The LENG operand specifies the minimum number of data
characters that a log record must have to be considered for beginning a
transaction.

Format: The value of integer can be any integer from 1 to 32000.

Default: 1.

Note: The length of log records for SNA devices is taken to be only the RU
portions of the records.

LOC={TH+n|RH+n|RU+n|integer|1}
Function: The LOC operand specifies the starting byte in the data portion of
the log record where the comparison is to take place.

Chapter 9. Specifying Response Time Utility control commands 131

Note: This operand is valid only if the TEXT operand is also coded.

Format: You can code one of the following values for the LOC operand:

TH+n Indicates an offset from the start of the transaction header (TH) where
n is an integer from 0 to 32000. TH+0 is the first byte of the TH.

RH+n Indicates an offset from the start of the response header (RH) where n
is an integer from 0 to 32000. RH+0 is the first byte of the RH.

RU+n Indicates an offset from the start of the request/response unit (RU)
where n is an integer from 0 to 32000. RU+0 is the first byte of the RU.

integer Indicates the relative byte in the RU (or data stream for non-SNA) that
will be the starting position of the test. If integer is greater than the
length of the data portion of the record, the record will not be
considered.

Default: 1.

Coding the TH+n, RH+n, or RU+n values for non-SNA messages causes the
LOC value to be the same as LOC=integer where integer = n+1. For example:
v LOC=RU+0 is equivalent to LOC=1 for non-SNA messages
v LOC=TH+3 is equivalent to LOC=4 for non-SNA messages.

LOG=byte
Function: The LOG operand specifies the byte to be compared with the
contents of the user data field in the header of a log record. The log byte can
be set using the TRANSMIT, INITSELF, and SNACMND statements in STL,
and using the TEXT and CMND statements in the WSim Scripting Language.

Note: Either the LOG or the TEXT operand must be coded. If both LOG and
TEXT are specified, the LOG operand has priority. The comparison for the user
data byte will be performed first, and if there is a match, the record is accepted
regardless of the data specified by the TEXT operand.

Format: You can enter one byte of data. The Response Time Utility treats a
single digit as an EBCDIC character and two digits as a hexadecimal character.

MATCH={FIRST|LAST}
Function: The MATCH operand specifies whether the first or last of a series of
consecutive records that match the BTRANS specifications is to be used to
begin a response time for a terminal.

Format: You can code one of the following values for the MATCH operand:

FIRST The first record that matches the BTRANS specifications will be used
to begin a response time.

LAST The last record that matches the BTRANS specifications will be used to
begin a response time.

Default: FIRST.

RECORD={XMIT|RECV}
Function: The RECORD operand specifies whether the record beginning this
transaction is to be a XMIT record (transmitted by WSim) or a RECV record
(received by WSim).

Format: For the RECORD operand, you can code XMIT or RECV.

Default: XMIT.

132 WSim V1R1 Utilities Guide

SCAN={YES|integer|1}
Function: The SCAN operand specifies that a record is to be scanned
sequentially for the data specified in the TEXT operand. The data starting at
the location specified by the LOC operand is scanned byte by byte and
compared with the character string specified by the TEXT operand. If data is
found that matches the TEXT data before the specified number of positions
have been scanned, the record is accepted.

Note: This operand is valid only if the TEXT operand is also coded.

Format: You can code the following values for the SCAN operand:

YES Scanning continues until the TEXT data is matched or the end of the
record is reached.

integer An integer from 1 to 32000. It specifies that scanning continues until
the TEXT data is matched, the specified number of positions have been
scanned, or the end of the record is reached.

Default: 1.

SNA={YES|NO}
Function: The SNA operand specifies whether all SNA transmit and receive
records are to be considered for transaction processing.

Note: This operand is ignored for non-SNA data.

Format: You can code one of the following values for the SNA operand:

YES All SNA records are considered for transaction processing, regardless
of SNA message content.

NO Only FM data that is not a SNA response is considered for transaction
processing.

Default: NO.

TEXT={(data)|'xx'}
Function: The TEXT operand defines the data to be used as the comparison
data or the mask to be used as the comparison mask when scanning a log
record.

Note: Either the TEXT or the LOG operand must be coded. If both LOG and
TEXT are coded, the LOG operand has priority.

Format: You can code one of the following values for the TEXT operand:

(data) Is 1 to 50 bytes of data enclosed in parentheses. You can enter
hexadecimal data within the parentheses by coding the digits within
single quotes. To use a parenthesis or single quote as a data byte, code
two of the characters. If you code (data), messages will be searched for
contents that exactly match the data provided.

Note: SO and SI characters are removed from DBCS data entered. To
include an SO or SI character in the data for the data compare, add the
hexadecimal equivalent of an SO (X'0E') or SI (X'0F') to the data.

'xx' Is two hexadecimal digits contained within single quotes. If 'xx' is
specified, a test under mask, which compares the byte indicated by the
LOC operand with the 2 hexadecimal digits within single quotes, will
be made. Since only 1 byte is compared, the SCAN operand does not

Chapter 9. Specifying Response Time Utility control commands 133

apply and is ignored. If all bits that are 1 in the mask byte ('xx') are
also 1 in the data byte tested, then a match is found.

Default: None. This operand is optional.

TIME={READY|START|STOP}
Function: The TIME operand specifies which time stamp is to be used in
calculating response times involving records selected by this command.

Format: For the TIME operand, you can code READY, START, or STOP.

Default: READY.

CGRAPH—Define scale for cumulative distribution graph

CGRAPH [INCR={integer|0}]
[,LINES={YES|NO}]

The CGRAPH command defines the scale factor for the cumulative distribution
graphs that can be printed after the terminal, terminal group, and summary output
reports.

Specifying the CGRAPH command will not cause a cumulative distribution graph
to be printed. To print the graph, use the REPORT command or the REPORT
operand on the VTAMAPPL, APPCLU, TCPIP, and TERM commands.

INCR={integer|0}
Function: The INCR operand specifies the increment value to be used between
response times (in tenths of seconds).

Note: If a value of 0 is coded or defaulted, the increment value will be
computed by subtracting the smallest response time from the largest response
time and dividing the difference by 50.

Format: The value of integer can be any integer from 0 to 999.

Default: 0.

LINES={YES|NO}
Function: The LINES operand determines whether the highlighting lines,
indicating jumps in the curve, will be printed.

Format: For the LINES operand, you can code YES or NO.

Default: NO.

END—End response time processing

END

The END command specifies that the Response Time Utility is to terminate
normally. No further processing is done, and all open data sets are closed. Any
commands entered after the last RUN command, but before the END command,
are ignored.

134 WSim V1R1 Utilities Guide

ETRANS—End transaction definition

ETRANS {LOG=byte}
{,TEXT={(data)|’xx’}}
[,LENG={integer|1}]
[,LOC={TH+n|RH+n|RU+n|integer|1}]
[,MATCH={FIRST|LAST}]
[,RECORD={XMIT|RECV}]
[,SCAN={YES|integer|1}]
[,SNA={YES|NO}]
[,TIME={READY|START|STOP}]

The ETRANS command defines the characteristics of a transmit or receive record
that will make it the end of a logical transaction for a terminal.

LOG=byte
Function: The LOG operand specifies the byte to be compared with the
contents of the user data field in the header of a log record. The log byte can
be set using the TRANSMIT, INITSELF, and SNACMND statements in STL,
and using the TEXT and CMND statements in the WSim Scripting Language.

Note: Either the LOG or the TEXT operand must be coded. If both LOG and
TEXT are coded, the LOG operand has priority. The comparison for the user
data byte will be performed first, and if there is a match, the record is accepted
regardless of the data specified by the TEXT operand.

Format: You can enter one byte of data. The Response Time Utility treats a
single digit as an EBCDIC character and two digits as a hexadecimal character.

TEXT={(data)|'xx'}
Function: The TEXT operand defines the data to be used as the comparison
data or the mask to be used as the comparison mask when scanning a log
record.

Note: Either the TEXT or the LOG operand must be coded. If both are coded,
the LOG operand has priority.

Format: You can code one of the following values for the TEXT operand:

(data) Is 1 to 50 bytes of data enclosed in parentheses. You can enter
hexadecimal data within the parentheses by coding the digits within
single quotes. To use a parenthesis or single quote as a data byte, code
two of the characters. If you code (data), messages will be searched for
contents which exactly match the data provided.

Note: SO and SI characters are removed from DBCS data entered. To
include an SO or SI character in the data for the data compare, add the
hexadecimal equivalent of an SO (X'0E') or SI (X'0F') to the data.

'xx' Is two hexadecimal digits contained within single quotes. If 'xx' is
specified, a test under mask, which compares the byte indicated by the
LOC operand with the 2 hexadecimal digits within single quotes, will
be made. Since only 1 byte is compared, the SCAN operand does not
apply and is ignored. If all bits that are 1 in the mask byte ('xx') are
also 1 in the data byte tested, then a match is found.

Default: None. This operand is optional.

Chapter 9. Specifying Response Time Utility control commands 135

LENG={integer|1}
Function: The LENG operand specifies the minimum number of data
characters that a log record must have to be considered for ending a
transaction.

Note: The length of log records for SNA devices is taken to be only the RU
portions of the records.

Format: The value of integer can be any integer from 1 to 32000.

Default: 1.

LOC={TH+n|RH+n|RU+n|integer|1}
Function: The LOC operand specifies the starting byte in the data portion of
the log record where the comparison is to take place.

Note: This operand is valid only if the TEXT operand is also coded.

Format: You can code one of the following values for the LOC operand:

TH+n Indicates an offset from the start of the transaction header (TH) where
n is an integer from 0 to 32000. TH+0 is the first byte of the TH.

RH+n Indicates an offset from the start of the response header (RH) where n
is an integer from 0 to 32000. RH+0 is the first byte of the RH.

RU+n Indicates an offset from the start of the request/response unit (RU)
where n is an integer from 0 to 32000. RU+0 is the first byte of the RU.

integer Indicates the relative byte in the RU (or data stream for non-SNA) that
will be the starting position of the test. If integer is greater than the
length of the data portion of the record, the record will not be
considered.

Default: 1.

Coding the TH+n, RH+n, or RU+n values for non-SNA messages causes the
LOC value to be the same as LOC=integer where integer =n+1. For example:
v LOC=RU+0 is equivalent to LOC=1 for non-SNA messages
v LOC=TH+3 is equivalent to LOC=4 for non-SNA messages.

MATCH={FIRST|LAST}
Function: The MATCH operand specifies whether the first or last of a series of
consecutive records that match the ETRANS specifications is to be used to end
the response time for a terminal.

Note: ETRANS MATCH=LAST may not be coded if its corresponding
BTRANS entry also has MATCH=LAST. Otherwise, unpredictable results can
occur in this situation.

Format: You can code one of the following values for the MATCH operand:

FIRST The first record that matches the ETRANS specifications will be used
to end a response time.

LAST The last record that matches the ETRANS specifications will be used to
end a response time.

Default: FIRST.

136 WSim V1R1 Utilities Guide

RECORD={XMIT|RECV}
Function: The RECORD operand specifies whether the record ending this
transaction is to be a XMIT record (transmitted by WSim) or a RECV record
(received by WSim).

Format: For the RECORD operand, you can code XMIT or RECV.

Default: RECV.

SCAN={YES|integer|1}
Function: The SCAN operand specifies that a record is to be scanned
sequentially for the data specified in the TEXT operand. The data starting at
the location specified by the LOC operand is scanned byte by byte and is
compared with the character string specified by the TEXT operand. If data is
found that matches the TEXT data before the specified number of positions
have been scanned, the record is accepted.

Note: This operand is valid only if the TEXT operand is also coded.

Format: You can code the following values for the SCAN operand:

YES Scanning continues until the TEXT data is matched or the end of the
record is reached.

integer An integer from 1 to 32000. It specifies that scanning continues until
the TEXT data is matched, the specified number of positions have been
scanned, or the end of the record is reached.

Default: 1.

SNA={YES|NO}
Function: The SNA operand specifies whether all SNA transmit and receive
records are to be considered for transaction processing.

Note: This operand is ignored for non-SNA data.

Format: You can code one of the following values for the SNA operand:

YES All SNA records are considered for transaction processing, regardless
of SNA message content.

NO Only FM data that is not a SNA response is considered for transaction
processing.

Default: NO.

TIME={READY|START|STOP}
Function: The TIME operand specifies which time stamp is to be used in
calculating response times involving records selected by this command.

Format: For the TIME operand, you can code READY, START, or STOP.

Default: READY.

EXIT—Define user exit

EXIT member
[,PARM=(data)]

The EXIT command specifies the name of a user exit routine that will calculate
response times. For more information about calculating response times, refer to

Chapter 9. Specifying Response Time Utility control commands 137

“Calculating response times for terminals” on page 113. See WSim User Exits for
more information about user exit routines.

member
Function: The member operand is the name of the user exit routine to be
loaded by the Response Time Utility and given control each time a log record
is read that satisfies the other command specifications.

Note: If you do not code the EXIT command, a WSim-supplied exit is invoked
to calculate the response times. If you code the EXIT command, but omit the
member operand, any currently loaded user exit is deleted, and the
WSim-supplied exit is invoked.

Format: The value of member can be any 1- to 8-character name that conforms
to standard JCL naming conventions.

Default: None. This operand is optional.

PARM=(data)
Function: The PARM operand specifies the user parameter data to be passed to
the user exit routine each time it is called to process a log record.

Note: If this operand is coded, it must be preceded by the member operand.

Format: The data for the PARM operand can be from 1 to 50 EBCDIC
characters. You do not have to duplicate special characters.

Default: None. This operand is optional.

EXTERM—Exclude terminal

EXTERM name[-num]
EXT name[-num]

The EXTERM command specifies the name of the device, logical unit (LU), or
transaction program (TP) for which the analysis will not be performed.

You must enter an EXTERM command for each individual device, LU, or TP which
you would not like in the Response Time Utility listing. If the EXTERM command
does not follow a valid TCPIP, VTAMAPPL, or APPCLU command, the name
specified will not be listed for all TCP/IP connections, VTAM applications, and
APPC LUs.

If the EXTERM command follows a valid TCPIP, VTAMAPPL, or APPCLU
command, the name specified will not be listed for that TCP/IP connection, VTAM
application, or APPC LU only.

name
Function: The name operand specifies the name of the device, logical unit (LU),
or transaction program (TP).

Format: The value of the name operand is a 1- to 8-character name that
matches the name coded on a WSim network definition DEV, LU, or TP
statement.

num
Function: The num operand specifies either a single session number for an LU
with multiple session capability or a specific transaction program instance.

138 WSim V1R1 Utilities Guide

Format: For an LU, the num operand can be any decimal integer from 1 to
65535. For TP instances, the num operand can be any decimal integer from 1 to
99999.

Note: If num is not appended to the LU name and multiple sessions exist for
the LU, all of the sessions are excluded. If num is not appended to the TP
name and multiple instances of the TP exist, all instances are excluded.

GRAPH—Define scale for frequency distribution graph

GRAPH [INCR={n|0}]

The GRAPH command defines the scale factor for the frequency distribution
graphs that can be printed after the terminal, terminal group, and summary output
reports.

Specifying the GRAPH command will not cause a frequency distribution graph to
be printed. To print the graph, use the REPORT command or the REPORT operand
on the VTAMAPPL, APPCLU, TCPIP, and TERM commands.

INCR={n|0}
Function: The INCR operand specifies the increment value to be used between
response times (in tenths of seconds).

Note: If a value of 0 is coded or defaulted, the increment value will be
computed by subtracting the smallest response time from the largest response
time and dividing the difference by 50.

Format: The value of n can be any integer from 0 to 999.

Default: 0.

HEADER—Define output report header

HEADER data

The HEADER command defines the data to be used as the page header on the
Response Time Utility output reports.

data
Function: The data operand specifies the data to be used as the page header on
the Response Time Utility output reports.

Format: The data operand can be up to 27 characters, including blanks and
special characters. The data operand begins with the first nonblank character
after the HEADER command and ends with the characters in column 71 or
after 27 characters.

Default: The default value is “WSim RESPONSE TIME ANALYSIS”.

Chapter 9. Specifying Response Time Utility control commands 139

LENGTH—Define minimum record lengths

LENGTH [RECEIVE={integer|1}]
[,TRANSMIT={integer|1}]

The LENGTH command specifies the minimum length of transmit and receive
records that can be used in computing response times. This command is used in
conjunction with normal response time rules (PROCESS SYSTEM or PROCESS
ACTUAL).

The LENGTH command does not affect user-defined transactions specified by
BTRANS and ETRANS commands. However, when a transaction is defined by a
BTRANS command only (for example, the ETRANS command is omitted, and the
response time ends according to the normal rules), the RECEIVE operand value is
used.

RECEIVE={integer|1}
Function: The RECEIVE operand specifies the minimum number of data
characters that a receive log record must have to be considered for ending a
response time.

Note: The length of log records for SNA devices is taken to be only the RU
portions of the records.

Format: The value of integer can be any integer from 1 to 32000.

Default: 1.

TRANSMIT={integer|1}
Function: The TRANSMIT operand specifies the minimum number of data
characters that a transmit log record must have to be considered for beginning
a response time.

Note: The length of log records for SNA devices is taken to be only the RU
portions of the records.

Format: The value of integer can be any integer from 1 to 32000.

Default: 1.

MSGTXT—Define a message generation deck for response
time analysis

MSGTXT nameM name

The MSGTXT command specifies the name of a message generation deck or STL
procedure for which further selection of records will be done. If particular
resources are requested for the run, only those records that match the specified
message generation decks or STL procedures will be used. If more than one
MSGTXT command is entered, all specified message generation deck or STL
procedure names will be used in the selection of records.

140 WSim V1R1 Utilities Guide

name
Function: The name operand specifies a name of a message generation deck or
STL procedure for which selection of records will be done.

Format: The value of the name operand is a 1- to 8-character name that
matches the name field from a WSim message generation or STL MSGTXT
statement.

Note: When a transaction begins in one message generation deck or STL
procedure and ends in another, unexpectedly long response time calculations
can result if only the first message generation deck or STL procedure has been
specified on a MSGTXT command. To achieve realistic calculations, you must
specify both message generation decks or STL procedures.

NTWRK—Define a network for response time analysis

NTWRK name
N name

The NTWRK command specifies the network name for which a response time
analysis will be done.

If you do not code a NTWRK command, the response time analysis will be done
for all networks that have records on the log data set.

name
Function: The name operand specifies the name of the network for which a
response time analysis will be done.

Format: The value of the name operand can be any 1- to 8-character name that
must match the label name specified on a WSim NTWRK network definition
statement.

Default: None. This operand is required.

P—Terminate console input

P

The P command specifies that command input from the operator's console is to be
terminated and that the Response Time Utility is to begin reading commands from
the SYSIN data set. If you enter this command and the SYSIN data set is not open,
the Response Time Utility continues requesting input from the console. The P
command is ignored if encountered in the SYSIN data set.

PERCENT—Define percentile values

PERCENT {p1[,p2[,...]]|90}

Chapter 9. Specifying Response Time Utility control commands 141

The PERCENT command specifies the percentiles for which response times will be
found.

{p1[,p2[,...]]|90}
Function: The operands specify the percentile values for which response times
will be found. For each value specified, a response time will be found such
that the specified percentage of all response times will be less than or equal to
the found response time.

Format: The operand value can be any integer from 1 to 99. You can code up
to 10 values separated by commas.

Default: 90.

PROCESS—Define response time type

PROCESS {ACTUAL|SYSTEM}

The PROCESS command specifies the type of response times to be computed when
user-defined transactions are not specified. Details on how response times are
computed are in “Calculating response times for terminals” on page 113.

{ACTUAL|SYSTEM}
Function: The operand specifies the type of response times to be computed.

Format: The operand value can be either ACTUAL or SYSTEM.

Default: SYSTEM.

Note: If PROCESS ACTUAL is specified for a large log data set and TRUNC
YES is not specified, it may take a great deal of host processor time to run the
Response Time Utility.

REPORT—Define output options

REPORT [LEVEL={TERM|TERMGRP|SUMMARY}]
[,TERM=(option1[,option2[,...]])]
[,TERMGRP=(option1[,option2[,...]])]
[,SUMMARY=(option1[,option2[,...]])]

The REPORT command defines the types of output reports that will be printed for
a response time analysis.

LEVEL={TERM|TERMGRP|SUMMARY}
Function: The LEVEL operand specifies the level of output reports to be
printed.

Format: You can code one of the following values for the LEVEL operand:

TERM A response time report will be printed for each terminal, each terminal
group (TCP/IP connection, VTAM application, or APPC LU) and for the
summary of all terminals.

TERMGRP A response time report will be printed for each terminal group and for
the summary of all terminals.

SUMMARY A report summarizing the response times for all terminals will be printed.

142 WSim V1R1 Utilities Guide

Default: TERM.

TERM=(option1[,option2[,...]])
Function: The TERM operand specifies the default output options for terminal
reports.

Note: These output options can be overridden for a specific terminal by
coding the REPORT operand for a TERM command. This operand is ignored if
LEVEL=TERMGRP or LEVEL=SUMMARY is coded.

Format: For the TERM operand, you can code one or more option keywords
within the parentheses in any order. The valid option keywords are:

CGRAPH Print a cumulative distribution graph.

NOCGRAPH Do not print a cumulative distribution graph.

GRAPH Print a frequency distribution graph.

NOGRAPH Do not print a frequency distribution graph.

LIST Print a list of the computed response times.

NOLIST Do not print a list of the computed response times.

TGRAPH Print a time graph.

NOTGRAPH Do not print a time graph.

TRANS Print a report for each defined transaction type.

NOTRANS Print a single report for all transaction types.

Default: LIST, NOGRAPH, NOCGRAPH, NOTGRAPH, and TRANS.

TERMGRP=(option1[,option2[,...]])
Function: The TERMGRP operand specifies the default output options for
terminal group reports.

Note: These output options can be overridden for a specific terminal group by
coding the REPORT operand for a TCPIP, VTAMAPPL, or APPCLU command.
This operand is ignored if LEVEL=SUMMARY is coded.

Format: For the TERMGRP operand, you can code one or more option
keywords within the parentheses in any order. For more information on the
valid option keywords, refer to the TERM operand.

Default: LIST, NOGRAPH, NOCGRAPH, NOTGRAPH, and TRANS.

SUMMARY=(option1[,option2[,...]])
Function: The SUMMARY operand specifies the output options for the
summary report.

Format: For the SUMMARY operand, you can code one or more option
keywords within the parentheses in any order. For more information on the
valid option keywords, refer to the TERM operand.

Default: LIST, NOGRAPH, NOCGRAPH, NOTGRAPH, and TRANS.

RUN—Perform response time analysis

RUN

Chapter 9. Specifying Response Time Utility control commands 143

The RUN command specifies that all commands have been entered and that
processing of the log data set should begin. You must enter this command to start
the response time analysis. After processing is complete, all parameters are reset to
their default values before any further commands are interpreted. If RUN is
entered and no other commands have been specified, response times will be
computed for all terminals on the log data set.

If consecutive runs specify time limits that are in ascending order and that do not
overlap, the log data set will not be closed and reopened between the runs. If a
run specifies TIME ALL, TIME START-END, or a time interval that includes
midnight, the data set will be closed and reopened before the next run.

TCPIP—Define a TCP/IP connection for response time analysis

TCPIP name
[,REPORT=(option1[,option2[,...]])]

The TCPIP command specifies the name of a TCP/IP connection for which a
response time analysis will be done. It also defines the output options to be used
when printing reports for the TCP/IP connection.

If you code any TCPIP, APPCLU, or VTAMAPPL commands, only those TCP/IP
connections, APPC LUs, and VTAM applications will be included in the response
time analysis. If you do not code any TCPIP, APPCLU, or VTAMAPPL commands,
all TCP/IP connections, APPC LUs, and VTAM applications encountered on the
log data set during the defined time interval will be processed.

name
Function: The name operand specifies the TCP/IP connection name for which
response time analysis is to be done.

Format: The value of the name operand can be any 1- to 8-character TCPIP
name.

Default: None. This operand is required.

REPORT=(option1[,option2[,...]])
Function: The REPORT operand specifies the output report options for this
TCP/IP connection.

Note: Any options specified in this operand override the corresponding
options specified in the TERMGRP operand of the REPORT command. This
operand is ignored if LEVEL=SUMMARY is specified on the REPORT
command.

Format: For the REPORT operand, you can code one or more option keywords
within the parentheses in any order. For more information on the valid option
keywords, refer to the TERM operand of the REPORT command.

Default: This operand is optional. If it is omitted, the output options for this
TCP/IP connection will be taken from the TERMGRP operand of the REPORT
command.

144 WSim V1R1 Utilities Guide

TERM—Define a terminal for response time analysis

TERM name[-num]
[,REPORT=(option1[,option2[,...]])]

T name[-num]
[,REPORT=(option1[,option2[,...]])]

The TERM command specifies the name of a terminal for which a response time
analysis will be done. It also defines the output options to be used when printing
reports for the terminal.

A TERM command must follow a valid TCPIP, APPCLU, or VTAMAPPL
command; it applies to the last TCPIP, APPCLU, or VTAMAPPL command entered.
CPI-C transaction programs are specified by APPCLU and TERM commands.
VTAMAPPL LUs are specified by VTAMAPPL and TERM commands. TCP/IP
client devices are specified by TCPIP and TERM commands. If you do not code
any TERM commands after a TCPIP, APPCLU, or VTAMAPPL command, all
terminals for the specified TCP/IP connection, APPC LU, or VTAM application
will be included in the analysis.

name
Function: The name operand specifies the name of a simulated terminal for
which the response time analysis is to be done.

Format: The value of the name operand can be any 1- to 8-character name that
matches the name field from a WSim DEV, LU, or TP network definition
statement.

Default: None. This operand is required.

num
Function: The num operand specifies a single session number for an LU with
multiple session capability or a specific transaction program instance.

Format: For an LU, the value of num can be any integer from 1 to 65535. If
num is not appended to the LU name and multiple sessions exist for the LU,
response times will be computed for all of the sessions. For a TP, the value of
num can be any integer from 1 to 99999. If num is not appended to the TP
name and multiple instances exist for the TP, response times will be computed
for all of the instances.

REPORT=(option1[,option2[,..]])
Function: The REPORT operand specifies the output report options for this
terminal.

Note: Any options specified in this operand override the corresponding
options specified in the TERM operand of the REPORT command. This
operand is ignored if LEVEL=TERMGRP or LEVEL=SUMMARY is specified on
the REPORT command.

Format: For the REPORT operand, you can code one or more option keywords
within the parentheses in any order. For more information on the valid option
keywords, refer to the TERM operand of the REPORT command.

Default: This operand is optional. If it is omitted, the output options for this
terminal will be taken from the TERM operand of the REPORT command.

Chapter 9. Specifying Response Time Utility control commands 145

TGRAPH—Define time graph parameters

TGRAPH [INCR={1|2|5|10}]
[,INTERVAL={integer|10}]
[,LINES={YES|NO}]
[,ORIGIN={integer|0}]
[,THRESH=integer]

The TGRAPH command defines the parameters for the time graphs that can be
printed after the terminal, terminal group, and summary output reports.

Specifying the TGRAPH command will not cause a time graph to be printed. To
print the graph, use the REPORT command or the REPORT operand on the
VTAMAPPL, APPCLU, TCPIP, and TERM commands. No time graphs will be
printed if you specify a user exit routine by an EXIT command.

INCR={1|2|5|10}
Function: The INCR operand specifies the increment value to be used in
plotting the response times (in tenths of seconds).

Format: The value of the INCR operand can be 1, 2, 5, or 10.

Default: 1.

INTERVAL={integer|10}
Function: The INTERVAL operand specifies the time interval during which
response values will be accumulated (in seconds).

Format: The value of the INTERVAL operand can be any integer from 1 to
3600.

Default: 10.

LINES={YES|NO}
Function: The LINES operand specifies whether the highlighting lines,
showing the range of response times, will be printed.

Format: The value of the LINES operand can be YES or NO.

Default: NO.

ORIGIN={integer|0}
Function: The ORIGIN operand specifies the origin or lower limit of the
response time scale of the time graph (in seconds).

Format: The value of the ORIGIN operand can be any integer from 0 to 500.

Default: 0.

THRESH=integer
Function: The THRESH operand specifies that a threshold line is to be printed
on the time graph. The integer value specifies the increment value at which the
threshold line is to be printed (in tenths of seconds).

Format: The integer value can be any integer from 1 to 32000.

Default: None. If this operand is omitted from the TGRAPH statement, no
threshold line will be printed.

146 WSim V1R1 Utilities Guide

TIME—Specify time limits

TIME {ALL}
{x-y}

where x can be hhmmss, hhmm, or START
and y can be hhmmss, hhmm, or END

The TIME command specifies the time limits of a simulation run for which the
response time analysis will be performed. The first field indicates the time at
which the analysis is to begin. This time is compared against the ready time of the
log record. The second field indicates the time at which the analysis is to end. This
time is compared against the stop time of the log record.

Times are 24-hour clock times (000000-235959). A time interval including midnight
is valid, such as TIME 235000-004500. The log data set must contain records
between a time that you specify and the beginning of the next hour. The first field
indicates the time at which the analysis is to begin. The second field indicates the
last second to be processed in the run. Except when using TIME ALL, any format
of the first operand field can be paired with any format of the second operand
field, for example, TIME 183000-END.

If you do not enter the TIME command, the entire log data set is processed. If you
enter multiple TIME commands, the limits from the last TIME command entered
are used.

ALL
Function: The ALL operand specifies that the entire log data set is to be
analyzed.

hhmm
Function: The hhmm operand indicates the hour and minutes that limit the
processing.

hhmmss
Function: The hhmmss operand indicates the hours, minutes, and seconds that
limit the processing.

START
Function: The START operand indicates that analysis is to begin with the first
record on the log data set.

END
Function: The END operand indicates that analysis is to end with the last
record on the log data set.

TPRINT—Print list of transaction records

TPRINT {YES|NO}

The TPRINT command determines whether or not a listing of log records
considered for transaction processing will be printed. Up to 60 data characters
from each log record will be printed. The records that begin and end valid
transactions are identified by transaction type name.

Chapter 9. Specifying Response Time Utility control commands 147

{YES|NO}
Function: The operand value determines whether or not the listing of
transaction records will be printed.

Format: For the operand value, you can code YES or NO.

Default: NO.

TRUNC—Truncate time stamps

TRUNC {YES|NO}

The TRUNC command determines whether or not the time stamps from the log
records will be truncated to tenths of seconds before response time calculations are
made.

{YES|NO}
Function: The operand value determines whether or not the time stamps will
be truncated.

Note: If PROCESS ACTUAL is specified for a large log data set and TRUNC
YES is not specified, it may take a great deal of host processor time to run the
Response Time Utility.

Format: For the operand, you can code one of the following values:

YES The hundredths digit of the time stamp will be set to zero.

NO A time stamp will be accurate to a hundredth of a second.

Default: NO.

UNLOCK—Define use of keyboard unlock messages

UNLOCK {YES|NO}

The UNLOCK command determines whether or not keyboard unlock messages are
to be considered as valid data messages when calculating response times for
terminals using the 3270 data stream when not doing transaction processing.

{YES|NO}
Function: The operand value determines whether or not keyboard unlock
messages will be used in calculating response times.

Format: For the operand, you can code the following values:

YES Keyboard unlock messages will be used in calculating response times.

NO Keyboard unlock messages will be discarded.

Default: NO.

148 WSim V1R1 Utilities Guide

VTAMAPPL—Define a VTAMAPPL for response time analysis

VTAMAPPL name
[,REPORT=(option1[,option2[,...]])]

V name
[,REPORT=(option1[,option2[,...]])]

The VTAMAPPL command specifies the name of a VTAMAPPL for which a
response time analysis will be done. It also defines the output options to be used
when printing reports for the VTAMAPPL.

If you code any TCPIP, APPCLU or VTAMAPPL commands, only those TCP/IP
connections, APPC LUs, and VTAM applications will be included in the response
time analysis. If you do not code any TCPIP, APPCLU or VTAMAPPL commands,
allTCP/IP connections, APPC LUs, and VTAM applications encountered on the log
data set during the defined time interval will be processed.

name
Function: The name operand specifies the VTAMAPPL name for which
response time analysis is to be done.

Format:The value of the name operand can be any 1- to 8-character
VTAMAPPL name.

Default: None. This operand is required.

REPORT=(option1[,option2[,...]])
Function: The REPORT operand specifies the output report options for this
VTAMAPPL.

Note: Any options specified in this operand override the corresponding
options specified in the TERMGRP operand of the REPORT command. This
operand is ignored if LEVEL=SUMMARY is specified on the REPORT
command.

Format: For the REPORT operand, you can code one or more option keywords
within the parentheses in any order. For more information on the valid option
keywords, refer to the TERM operand of the REPORT command.

Default: This operand is optional. If it is omitted, the output options for this
VTAMAPPL will be taken from the TERMGRP operand of the REPORT
command.

*—Comment

* [comment]

The * command specifies a comment line that is listed with the other commands. It
has no effect on the Response Time Utility processing.

comment
Function: Specifies a user comment that is printed with the Response Time
Utility command listing. After the *, you can enter any data.

Chapter 9. Specifying Response Time Utility control commands 149

150 WSim V1R1 Utilities Guide

Chapter 10. Using ITPECHO to test WSim simulated resources

ITPECHO is a VTAM application program supplied with WSim as a sample
routine. You can use ITPECHO with WSim simulated resources (the supplied
sample message generation decks and network definition statements) to help you
with the WSim installation, learning, and planning processes.

ITPECHO is essentially an “echo” program. It receives data and transmits it to the
terminal that issued the request. ITPECHO supports 3270 terminals (LU2) and any
non-3270 devices that do not have specific data stream dependencies (such as
LU0).

The sections in this chapter present information about the following items:
v What requirements ITPECHO needs to run on your system
v How to install ITPECHO on your system
v How to run ITPECHO, including:

– Execution parameters to use with JCL or a TSO CLIST
– Examples of JCL and a TSO CLIST for running ITPECHO.

v Operator commands for starting ITPECHO
v Logon procedure for ITPECHO.

Understanding ITPECHO requirements
This section describes the functional requirements for ITPECHO, including:
v Programming requirements
v Storage requirements
v SNA considerations
v 3270 devices
v Non-3270 devices.

Programming requirements
ITPECHO runs with any current release of VTAM on currently supported MVS. It
runs in either 24-bit or 31-bit addressing mode.

Storage requirements
The minimum virtual region size required to run ITPECHO is determined by the
maximum number of concurrent sessions and the buffer size allocated for each
session. To calculate the approximate storage requirements, use the following
formula:
S = 14000 + N * (2*B + 480)

where:

S Storage requirements in bytes

N Maximum number of expected concurrent sessions

B BUFSIZE execution parameter value.

© Copyright IBM Corp. 1985, 2015 151

SNA considerations
Regardless of the real terminal type that is in session, the VTAM interface makes
all terminals appear to ITPECHO as SNA logical units. Therefore, SNA protocols
are used in the communication.

The BIND
A BIND image is used by both half-sessions at logon time to specify mutual
operating procedures. Make sure you select an appropriate BIND image when you
log on to ITPECHO. The following should be considered when you are selecting
BIND parameters:
v Duplex, half-duplex flip-flop mode, and half-duplex contention are supported. If

you specify other than half-duplex flip-flop mode for a 3270 LU2, ITPECHO
changes the value to half-duplex flip-flop. Other terminal types will support all
modes.

v ITPECHO obeys the primary response protocol setting (byte 4 bits 2-3). On every
data request sent, that particular response type (none, exception, or definite) will
be requested in the RH. If the response type is definite or exception (bits 2-3 =
B'11'), the exception responses are always requested unless the PF6 function is
requested (see below).

v ITPECHO never transmits multiple chain elements because of the static buffer
allocations for each session. However, it can receive multiple chain elements
from the terminal. When ITPECHO receives multiple chain elements, an
“only-in-chain” element is echoed back to the LU, which contains the union of
the individual elements received. The length of this element, like all others, is
truncated, if necessary, to the size of the internal buffer (BUFSIZE).

Note: If you are using VTAM Version 3, “only-in-chain” messages sent by
ITPECHO to the terminal are automatically chained based on the primary
maximum RU size in the BIND image for the session.

When an LU requests a session with ITPECHO, the LU should use a 3270 data
stream. If the terminal is not a 3270, the INITIATE request should contain
NON3270 as the user data field. When this is seen by ITPECHO, RUs are echoed
exactly, with no command fields inserted.

Functions available with 3270 devices

Note: This section applies only to ITPECHO sessions with 3270 devices. ITPECHO
provides more than just an echo capability for 3270 devices. A terminal can request
a function by using a PF key, data stream content, or a combination of a PF key
and data stream content. The following functions are available depending on the
attention identifier (AID) chosen.

AID ITPECHO Function

Enter Echo

PF5 Automaticstring/repetition

PF6 Automatic string/repetition with definite response requested if
allowed by the BIND parameters

PF9 Repeat last function

Clear Restore the panel format

Logoff Terminate the session

152 WSim V1R1 Utilities Guide

Note: All other attention identifiers will act like the attention identifier Enter.

Enter—Echo function
The Enter AID requests that ITPECHO perform the standard echo function on the
input data from the panel. Essentially, the 3270 fields are stripped out and the
remaining content is sent back with a 3270 WRITE command.

ITPECHO assumes that the 3270 in session has at least a 24x80 panel display. After
you log on, ITPECHO formats the panel into two logical fields, the top (protected)
and the bottom (unprotected). The cursor is placed at the start of the unprotected
input field. The protected field actually starts in row 24, column 80 of the lower
right corner, and continues into the top half of the panel.

Figure 34 shows an example of the initial ITPECHO panel. When you enter data in
the input field, the response will come back to the top of the panel.

WELCOME TO ITPECHO. ENTER=ECHO CLEAR=RESTORE 5/6=STRING REPEAT 9=REPEAT
ENTER DATA TO ECHO BELOW:

Type in the data to be echoed, starting at the initial cursor position. When you
press the Enter key, ITPECHO expects to receive a data stream with the format of
the incoming RU, as shown in Figure 35.

AID C SBA A command data

where:

AID 1-byte AID indicator

C 2-byte Cursor Position

SBA 1-byte Set Buffer Address command

A 2-byte address of input field that contains the following data:

command ITPECHO 3270 command string

data Incoming “data” echoed.

Figure 34. Initial ITPECHO panel

Figure 35. ITPECHO incoming data stream

Chapter 10. Using ITPECHO to test WSim simulated resources 153

When ITPECHO receives an Enter AID, it strips the first six bytes from the RU,
leaving a data portion. Then, ITPECHO places a 3270 WRITE command string into
the output buffer. This string is followed by the data portion stripped off of the
incoming RU. If the total length of the command string and data is longer than the
allocated buffer size, the data is truncated to fit. You should be aware of this
possible truncation when writing IF statements in message generation decks.

The WRITE command string causes the following events to be executed when the
terminal receives the message:
1. The unprotected field is erased.
2. The protected field is erased up to, but not including, the middle rows that

contain permanent operator information.
3. The data is written starting in row 1, column 1.
4. The cursor is again positioned at the input field, ready for another message.

If the original panel format was destroyed, such that the entire panel is one large
input field, ITPECHO recognizes this and does not strip out too many characters in
the input data. The panel format can be destroyed when the attribute bytes are
overwritten, perhaps by a long (1920 bytes) message. In fact, the unformatted panel
allows you to type more input data than the formatted panel. To restore the panel
to its original form, simply press the Clear key.

PF5—Automatic string/repetition function
When you press PF5, an automatic string and repetition function is available. To
use this feature, type in a set of integer request values on the terminal, starting at
the initial cursor position. These values must conform to the following syntax:
LENG[,REPT[,INCR]] [DATA]

where:

LENG Specifies an integer from 0 to 32767. This requests an alphabetic string of
this length to be sent to the terminal. LENG is required.

REPT Specifies an integer repetition factor from 1 to 32767. This requests that a
total of n alphabetic string transmissions be sent in a row. The default is
one transmission.

INCR Specifies an increment value from 0 to 32767. This requests that each
subsequent string repetition be incremented by n characters in length. The
default is zero.

DATA The data to be sent.

For example:
4,3,1 ABCDEF

These values request an initial string length of 4. The string is sent 3 times to the
terminal; each time, the string length is incremented by one byte, as follows:

ABCD is sent.
ABCDE is sent.
ABCDEF is sent.

Notes:

v To use INCR, you must also use REPT.
v The first blank encountered in the request indicates the end of the request

values.

154 WSim V1R1 Utilities Guide

v Any invalid specification causes an error message to be sent to the terminal.
v If the string length (including the command string) is too long to fit into the

buffer, the string is truncated to fit.
v You can type in additional data following the request values, as long as it

follows the delimiting blank character. (No blank is necessary if the INCR value
contains four digits.) ITPECHO ignores this data and allows you, for example, to
send a 30-byte message and receive a 100-byte message in response.

v ITPECHO will only process a PF5 request from a properly formatted panel. It
will not process the function from an unformatted panel.

v When you ask ITPECHO to send more than 1130 bytes of data back to the
simulated terminal (or a real terminal), the data will overlay the field definition
with data and you may not be able to enter data. When you try to enter the
data, you can get a ITP0403I message that indicates you are trying to enter data
into a protected field. The following script lets you request more than 1130 bytes
to be sent from ITPECHO to the simulated terminal and allows the simulated
terminal to enter the next request.
0 IF LOC=D+0,TEXT=(ABC),THEN=CONT,SCAN=YES,STATUS=HOLD

CURSOR ROW=22,COLUMN=1
TEXT (1920),LENG=196
PF5

* Use LCLEAR to do a local clear of
* the screen

LCLEAR
TEXT (xxx1920),LENG=196 Note xxx makes ITPECHO think

* there is a SBA
PF5
WAIT

ITPECHO expects the first three bytes to be a Set Buffer Address (SBA). So you
fool it with the “xxx”.

PF6—Automatic String/Repetition Function with Definite
Response Requested
This PF key performs the same function as PF5, but also requests a definite
response from the terminal if definite response is allowed by the BIND image for
the session.

PF9—Repeat previous function
This function causes ITPECHO to transmit the last message sent to the terminal
again. In the event that a number of messages were sent with the automatic string
and repetition (PF5 or PF6) function, ITPECHO sends the entire sequence of
messages again.

Clear—Clear and reformat the panel function
This function clears the display panel and causes ITPECHO to send the initial
start-up message to initialize the panel. You can use Clear to restore the original
panel format if it is accidentally (or purposely) destroyed.

Logoff—Terminate the session function
If you type in the logoff command at the terminal, ITPECHO recognizes the
command and terminates the session. The proper format of the command is
LOGOFF, and it must be the first string in the data. You can type in other data
after the command, if at least one blank follows the word LOGOFF. The extra data
is ignored.

Chapter 10. Using ITPECHO to test WSim simulated resources 155

Other AIDs—Echo function
Any other AID byte causes an echo function just as if the Enter key were pressed.
If the AID carries data along with it after the cursor location, an echo will occur. If
no data follows the AID, no data will be echoed (for example, PA 1, PA 2, or PA 3).
See the previous discussion on the Enter key for more information on the echo
function.

Functions available with non-3270 devices
Non-3270 devices (those that contained NON3270 as the INITIATE user data) do
not receive special data stream considerations from ITPECHO. In fact, the only
functions available in NON3270 operating mode are echo and logoff.

Echo
Any data received by ITPECHO (that does not cause a logoff) is sent back to the
terminal in the exact format that it was received. No command insertion or
modification is done. If the RU received is too long to fit into the buffer, ITPECHO
truncates it to the length of the buffer.

Logoff
If the data stream received by ITPECHO contains LOGOFF (optionally followed by
a blank and more data) starting at the first character, ITPECHO terminates the
session.

Installing ITPECHO
You can install ITPECHO during the normal WSim installation procedure. Nothing
additional needs to be done to install this program. However, some other
preparation may be necessary before ITPECHO is run the first time. First, consider
which APPL definition will be used by ITPECHO. Also, prepare your JCL
procedure used to start ITPECHO, keeping in mind the ability to tailor the
execution parameters.

For ITPECHO to communicate with VTAM, the application program must be
defined with a VTAM APPL definition statement. The following example shows an
APPL definition statement that defines an ITPECHO application program:
ITPECHO APPL

You can use all of the default operand values for VTAM. You can optionally use
password protection (PRTCT) in combination with the PASSWD execution
parameter.

Although using the name ITPECHO could be the simplest choice, you can use any
other application name. In fact, if extra unused APPL definitions exist in VTAM,
you can use one of them without having to modify the data sets involved. You can
then override the default APPLID execution parameter when running ITPECHO.

After adding any APPL definition statement, activate the application with the
VTAM operator command VARY. The application must be active before ITPECHO
can attempt to open the Access Method Control Block (ACB).

You must specify PARSESS=YES on the VTAM APPL definition when the WSim
VTAM application has more than one active session, such as parallel sessions, with
another VTAM application or logical unit.

156 WSim V1R1 Utilities Guide

Running ITPECHO
This section describes the execution parameters and the JCL and a TSO CLIST
required to run ITPECHO.

Using ITPECHO execution parameters
You can enter the following execution parameters, which are optional, in the
PARM field for the JCL EXEC statement or for the TSO CLIST CALL statement
when you run ITPECHO.

APPLID=name
Specifies the VTAM application identifier for the ACB. The name can be any 1-
to 8-character alphanumeric name that VTAM will accept as a valid application
identifier. If not coded, the default APPLID is ITPECHO.

BUFSIZE=nnnnn
Specifies a buffer size to be used for each input and output buffer associated
with each session. These two buffers are allocated when a session is requested
and will limit maximum message lengths to the specified size. The number of
bytes in the buffer nnnnn is an integer from 20 to 32767. If not coded, the
default BUFSIZE is 2048.

PASSWD=password
Specifies the password to be used when opening the ACB with VTAM. This
should match the PRTCT operand value on the VTAM APPL definition
statement for the ACB that is being used. If no PRTCT operand is coded in
VTAM, no password checking is done and any PASSWD value will be
accepted.

The password can be any 0- to 8-character alphanumeric password that VTAM
will accept as a valid password. If not coded, the default PASSWD is left blank.
Coding PASSWD with no value resets the password value to blanks.

SMSG
Causes session initialization and termination messages to be written to the
operator with a WTO. This is the initial setting for ITPECHO.

NOSMSG
Suppresses session initialization and termination messages. This can be useful
if hundreds of sessions are involved during the run.

TRACE
Starts an internal trace within ITPECHO. This is mainly for debugging
purposes and may be required for problem determination.

NOTRACE
Stops the internal trace if it was active. This is the initial setting for ITPECHO.

WTOR
Causes the WTORs associated with messages ITP904E and ITP905E to be
issued. This is the initial setting for ITPECHO.

NOWTOR
Suppresses the WTORs associated with messages ITP904E and ITP905E.
NOWTOR allows ITPECHO to be executed without operator intervention.

GNAME = generic_resource_name
Allows ITPECHO to associate itself with the generic resource name specified.

After ITPECHO is started, you can change the execution parameters before the
ACB is opened if the WTOR execution parameter is specified or defaulted. The

Chapter 10. Using ITPECHO to test WSim simulated resources 157

current parameters will be displayed with message ITP900I, and you can reply to
message ITP904E with new execution parameters (in the format listed above), U to
use the current settings, or END to terminate program execution. Refer to WSim
Messages and Codes for more information about these messages.

If you enter new parameters, they are displayed again, and you are prompted for
additional changes, U, or END. If you made an error in the specification of any
parameter, the entire parameter list is set to the defaults. Once you reply U to the
message, the ACB is opened and ITPECHO is ready to accept logon requests.

Using JCL
Below shows an example of JCL you can use to run ITPECHO on MVS.
//ITPECHO PROC
//JOBLIB DD DSN=WSIM.SITPLOAD
//ITPECHO EXEC PGM=ITPECHO,
// PARM=(’APPLID=YOURAPPL,BUFSIZE=2000’,
// ’PASSWD=APPLPASS’)
//

Using a TSO CLIST
The following example is a CLIST you can use to run ITPECHO under TSO.
CALL ’WSIM.SITPLOAD(ITPECHO)’

Note: If you run ITPECHO under TSO, you cannot use the ID or terminal while
the job is running.

Using ITPECHO operator commands
You can start ITPECHO as a normal system job by using the MVS Start command
or by submitting the JCL. Once ITPECHO is started, message ITP905E leaves an
outstanding reply for operator commands if the WTOR execution parameter is
specified or defaulted. In response to this message, the operator commands listed
in the following section may be issued while ITPECHO is running. Only one
command can be entered at a time.

SMSG Causes session initialization and termination messages to be written to the operator with
a WTO. This is the default for ITPECHO.

NOSMSG Suppresses session initialization and termination messages. This is useful if hundreds of
sessions are involved during the run.

TRACE Starts an internal trace within ITPECHO. This is mainly for debugging purposes, and
may be required for problem determination.

NOTRACE Stops the internal trace if it was active.

END Causes ITPECHO to terminate. This is the normal method of ending the program.

Logging on to ITPECHO
Logging on to ITPECHO is a simple process if you understand the different
procedures and the SNA protocols used during session initiation.

There are three components of a logon request that need special consideration
when using ITPECHO:
v The application identifier. The application identifier is always required for any

logon request.

158 WSim V1R1 Utilities Guide

v The optional INITIATE_SELF user data. The user data field of the
INITIATE_SELF is applicable only for non-3270 devices that will use ITPECHO.
If this field is NON3270, no 3270 data streams are used by ITPECHO. Otherwise,
3270 data stream format is assumed in transmit and receive messages.

v The logmode (BIND image). The logmode name is optional, but should indicate
an LU2 BIND image for WSim LU2 devices.

You can use one of the following common methods to initiate a session with the
application and a terminal (simulated or real):
1. V NET,LOGON=ITPECHO,ID=luname

The system operator can use the VARY LOGON VTAM command to initiate a
session with the application and the terminal (or group of terminals). Refer to
ACF/VTAM Programmer's Guide for more information on this command. With
this method, you can specify a LOGMODE operand but user data (such as
NON3270) is not allowed.

2. LOGON APPLID(ITPECHO)
The terminal operator can issue the logon command from the terminal in
SSCP-LU session to initiate a session with ITPECHO. Both LOGMODE and
DATA operands are available on this command. A sample logon request for a
non-3270 device might be:
LOGON APPLID(ITPECHO) LOGMODE(WSIMLU0) DATA(NON3270)

3. SNA INITIATE_SELF Request
An SNA INITIATE_SELF request may be generated by the WSim terminals,
especially for cross-domain simulation. The RESOURCE would be ITPECHO,
and again, BIND images and user data may also be included depending on the
device.
From a WSim script, the CMND statement could be coded like this:
CMND COMMAND=INIT,RESOURCE=ITPECHO,MODE=WSIMLU0,DATA=(NON3270)

4. VTAMLST Definitions
VTAMLST definition statements for the logical units have a variety of operands
allowing them to be assigned to a specific application permanently. This
method of initiating sessions is easy and it eliminates some of the logon
scripting that must be done in WSim.

For information on running the sample installation network supplied with WSim,
refer to WSim Script Guide and Reference.

Understanding ITPECHO return codes
After running, ITPECHO sets a return code to indicate the status of the execution.
ITPECHO can return the following codes:

Code Meaning

0 Execution completed successfully.

4 The program ended during parameter specification.

8 Storage was not available for initialization.

12 The ACB could not be opened with VTAM.

Chapter 10. Using ITPECHO to test WSim simulated resources 159

160 WSim V1R1 Utilities Guide

Chapter 11. Simulated resource type codes

This chapter lists the code values for each simulated resource type. You can use the
codes from this table to identify resource types when reading a log data set listing
or processing in a user exit routine.

The following lists the code values for terminal resource types:

Terminal Type
TCP/IP 30
VTAMAPPL 69

The following lists the code values for device resource types:

Device Type Device Type
FTP (command conn) 91 LU0 E0
FTPD (data conn) 92 LU1 E1
STCP 93 LU2 E2
TN3270 94 LU3 E3
TN3270E 95 LU4 E4
TN3270P 96 LU6 E6
SUDP 97 LU7 E7
TNNVT 98 LU6.2 E9
TN5250 99

© Copyright IBM Corp. 1985, 2015 161

162 WSim V1R1 Utilities Guide

Chapter 12. Understanding message logging

This chapter describes message logging, time stamping, writing messages to the
log data set, and logging messages under specific conditions, including:
v File Transfer Protocol (FTP) over a TCP/IP network
v CPI-C

What is message logging?
The WSim message logging facility, when active, writes messages to the log data
set containing all data that WSim simulated resources transmit or receive in a
specified network. Most WSim users use the message logging facility because of its
usefulness for analyzing network simulations.

You define the name of the data sets that will be used for message logging in the
LOGDD DD statements when you run WSim. By default, the message logging
facility is active for the entire network. You can override the default in your
network definition by specifying MLOG=NO on the NTWRK, or other network
definition statements.

Furthermore, you can code the NTWRKLOG statement when you define a network
to specify that a separate log data set be used for that network. This enables you to
run multiple networks and analyze the results from each network independently at
a later time.

Each record on the log data set contains an 88-byte header, followed by the data
transmitted or received, an informational message, or trace data. You use the
MLEN operand on the NTWRK or other network definition statements to specify
the maximum length of the data portion of a record. Each record belongs to one of
the following record types:

Console record (CNSL)
Contains either an operator command or an operator command response in
the data portion of the record. Operator commands are always logged.

CPI-C trace record (CTRC)
Contains general messages that trace the execution of CPI-C transaction
programs (TPs).

Informational record (INFO)
Is written to the log data set when errors occur during a simulation run,
when message generation starts or ends, or when a user exit routine
invokes the WSim interface routine for logging data.

Log record (LOG)
Is written to the log data set whenever a LOG statement or a LOG operand
on an IF statement is encountered during message generation. The data is
written in an interpreted dump format so that it appears in hexadecimal
and EBCDIC notation.

Log display record (DSPY)
Is written to the log data set each time a simulated 3270 or 5250 display or
printer image buffer is written to the log data set as a result of the
LOGDSPLY operand or the LOG DISPLAY statement.

© Copyright IBM Corp. 1985, 2015 163

Marker record (MARK)
Is written to the log data set each minute of the simulation run. This
record contains a header only; it contains no data.

Message data record (XMIT and RECV)
Contains the data generated or received by a WSim-simulated resource.

Message trace record (MTRC)
Contains general messages about the message generation path through
decks (EVENTS) as well as the IF messages about logic tests.

STL trace record (STRC)
Contains general messages about the execution of an STL program.

Verify data record (VRFY)
Contains information relevant to IF statements processed with the VERIFY
action specified.

For more information about the different log record types, refer to the list of record
types in “Log record header” on page 33. The following sections discuss how
messages are time stamped and how data messages that are received or
transmitted by a simulated resource are logged.

How messages are time stamped
Each record written to the WSim log data set contains three time stamps in the
header portion of the record. These time stamps are labeled START, STOP, and
READY. The information contained in each time stamp field depends on whether
the record is a message data record.

Time stamps for records that are not message data records
Log data set records that are not message data records (for example, informational,
marker, console and display records) contain the following data in the time stamp
fields of the record header:

START field
Contains a time stamp that gives the time that the record was created in
the WSim host processor.

STOP field
Contains the date as packed decimal digits of the form:
0CYYDDDF

where:

C is a digit representing centuries beyond the twentieth. In the years
1900 through 1999, C has a value of 0. In the years 2000 through
2099, C has a value of 1.

YY is the last two digits of the year

DDD is the day of the year

F is a 4-bit sign character

For example, January 21, 2002 would be returned as 0102021F.

READY field
Contains the WSim release level left-justified in the field.

164 WSim V1R1 Utilities Guide

Time stamps for message data records
The information contained in the time stamp fields of the record header for
message data records varies depending on the following:
v Whether the data was transmitted or received
v The type of simulation.

The following sections define the START, STOP, and READY time stamps for
several types of simulation. Note that for a data message transmitted by a
simulated resource, the READY time stamp is created in the WSim host processor
when the resource has completed its “think” time and is ready to transmit a
message in response to the next poll received. The START and STOP time stamps
are set differently depending on the type of simulation being performed.

VTAMAPPL simulation
For a data message transmitted from a simulated resource to the system under test
using the VTAM API, the START time stamp is created in the WSim host processor
when the send request is queued to VTAM. The STOP time stamp is created in the
WSim host processor when WSim receives notification from VTAM that the send
request is complete.

For a data message received by a simulated resource using the VTAM API, the
START time stamp is created in the WSim host processor when WSim receives
notification from VTAM that data has been received. The STOP and READY time
stamps are equal and are created in the WSim host processor when WSim receives
notification from VTAM that all the data has been moved into a receive buffer.

CPI-C transaction program simulation
For a data message transmitted from a simulated CPI-C transaction program to the
system under test, the START time stamp is created in the WSim host processor
when the send request is queued to VTAM. The STOP time stamp is created in the
WSim host processor when WSim receives notification from VTAM that the send
request is complete.

For a data message received by a simulated CPI-C transaction program, the START
time stamp is created in the WSim host processor when WSim receives notification
from VTAM that data has been received. The STOP and READY time stamps are
equal and are created in the WSim host processor when the WSim script issues a
CPI-C verb that retrieves the received data.

TCP/IP client simulation
For a data message transmitted from a simulated resource to the system under test
using a TCP/IP connection, the START time stamp is created in the WSim host
processor when the send() socket call is issued. The STOP time stamp is created in
the WSim host processor when WSim receives notification from TCP/IP that the
send request is complete.

For a data message received by a simulated resource using a TCP/IP connection,
the START time stamp is created in the WSim host processor when the recv()
socket call is issued. The STOP and READY time stamps are equal and are created
in the WSim host processor when WSim receives notification from TCP/IP that all
the data has been moved into a receive buffer.

Chapter 12. Understanding message logging 165

How data messages are logged
In general, messages to or from WSim-simulated resources are written to the log
data set immediately after they are sent or received. The messages are logged in
the same format in which they are sent or received, with the following exceptions:
v The logging of File Transfer Protocol (FTP) command data and FTP file data.

Each of these special cases is discussed in more detail in the following sections.

Logging FTP command data and FTP file data
Because FTP command data and FTP file data flow on separate TCP/IP
connections, the connection on which each unit of data flows is identified in the
WSim log data set and indicated in the formatted output by ITPLL. When WSim
logs ASCII data on the data connection, the interpreted portion of the formatted
output shows the ASCII characters represented by the hexadecimal data. WSim
always logs data flowing on the command connection in EBCDIC, even though the
data actually flows in ASCII.

WSim flags data not actually transmitted to or received from the FTP server with a
“%” character prior to the XMIT or RECV in the log header.

CPI-C transaction program message logging
A data message for a CPI-C transaction program is any data that flows to or from
a conversation partner. This data may be in the form of data sent or received,
attach requests (FMH-5s) sent or received, or error log data sent by the transaction
program.

Data, attach requests, and error log data that is sent from the simulated transaction
program to a conversation partner is logged using the XMIT record type. Data and
attach requests that are received from a conversation partner by the simulated
transaction program are logged using the RECV record type. As with other
simulation types, the transmit and receive records will only be present in the
WSim log if message logging was turned on(MLOG=YES) when the simulation
was run.

166 WSim V1R1 Utilities Guide

Chapter 13. Using the TCP/IP Trace Utility

The TCP/IP Trace Utility uses the real-time application-controlled TCP/IP trace
Network Management Interface (NMI) to capture TCP/IP data trace records.
TCP/IP data trace records contain the data that is exchanged between a server and
a client. The utility saves the trace records to a data set that the ITPIPGEN
program can process. An STL program can then be generated from TCP/IP trace
records.

Running the TCP/IP Trace Utility

The TCP/IP Trace Utility requires information to create the trace. You can supply
the information in one of the following ways:
v Enter it in fields on the WSim/ISPF Interface panel for the TCP/IP Trace Utility.
v Offer it as execution parameters to the trace utility program ITPIPTRX.

The JCL that you use to run the trace utility provides the following locations:
v The data set that is used to save the TCP/IP data trace records
v The printer

To use the TCP/IP Trace Utility, you must have READ access to the following SAF
resource profiles in the SERVAUTH class:
v EZB.TRCCTL.sysname.tcpname.OPEN
v EZB.TRCCTL.sysname.tcpname.DATTRACE

Where:
v sysname is the MVS system name where the TCP/IP stack is running
v tcpname is the TCP/IP stack job name

To use the TCP/IP Trace Utility to obtain a trace in clear text for a server that uses
AT-TLS for message encryption, you must have READ access to the following SAF
resource profile in the SERVAUTH class: EZB.TRCSEC.sysname.tcpname.AT-TLS

Note: When simulating TCP/IP clients, WSim does not have support for
establishing a secure connection by using SSL. Therefore, when you use WSim to
simulate a client that requires a secure connection, you must define a TCP/IP
networking policy to ensure that the simulated client uses AT-TLS.

For further information on the SAF resources, see z/OS® Communications Server: IP
Programmer's Guide and Reference.

For further information on TCP/IP networking policies, see z/OS Communications
Server: IP Configuration Guide and z/OS Communications Server: IP Configuration
Reference.

The following sections describe more information about the TCP/IP Trace Utility:
v Running the TCP/IP Trace Utility using the WSim/ISPF Interface
v Execution parameters
v An example of JCL

Note: The TCP/IP Trace Utility cannot be run via a TSO REXX/CLIST.

© Copyright IBM Corp. 1985, 2015 167

|

|

|
|
|
|
|
|

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

|
|
|

|
|
|
|

|
|

|
|
|

|

|

|

|

|

Using the WSim/ISPF Interface

You can run the TCP/IP Trace Utility from the WSim/ISPF Interface. To do this,
follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method that you

use to do this depends on how the WSim/ISPF Interface application is installed
at your site. If you are not sure how to do this, see your system programmer
for assistance.

2. Select option 4 from the WSim/ISPF Interface main panel and press Enter. The
TCP/IP Trace Processing menu is displayed.

Note: You can also type “TCPPROC” on the command line and press Enter to
display this panel.

3. Select option 1 from the TCP/IP Trace Processing menu and press Enter. The
Generate a TCP/IP Data Trace panel is displayed.

Note: You can also type “TCPTRC” on the command line and press Enter to
display this panel.

4. Fill in the appropriate information on this panel and press Enter to run the
TCP/IP Trace Utility.

For more information on the WSim/ISPF Interface, see Chapter 2, “Running WSim
with the WSim/ISPF Interface,” on page 5.

Using TCP/IP Trace Utility execution parameters

You can enter the following execution parameters in the PARM field for the JCL
EXEC statement or on the CALL statement for TSO CLISTs when you run the
TCP/IP Trace Utility.

STACK=name
Specifies the name of the z/OS TCP/IP stack that handles the communication
between the server and client.

PORT=nnnnn
Specifies the port that is used by the server that executes on z/OS.

IP=ipaddr
Specifies the IP address of the client that communicates with the server. The IP
address can be either an IPV4 address or an IPV6 address.

IDLE=nnnnn
Specifies an idle time limit value in seconds. Idle time occurs when there is no
communication between the server and client. If idle time exceeds the specified
limit, WSIM stops the trace. The default idle time limit is 180 seconds.

Note: Whenever a message is exchanged between the server and client, the
idle time value is reset to zero.

PRTLNCNT=nnn
Specifies the maximum number of lines to be printed on a page of output
before ejecting to a new page. The value for nnn is an integer from 35 to 255.
The default value for nnn is 60.

168 WSim V1R1 Utilities Guide

|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

Using JCL

The following JCL statements are required to run the TCP/IP Trace Utility on
MVS.

Statement Function

TRJOB1 JOB Initiates the job.

DELETE EXEC Invokes program IEFBR14 to enable the
deletion of the output trace data set if it
exists.

DELFILE DD Specifies the data set where the TCP/IP trace
records are saved.

TCPDATRC EXEC Specifies the TCP/IP Trace Utility program
ITPIPTRX.

STEPLIB DD Defines the data set that contains the WSim
host processor modules.

TCPTRACE DD Defines the data set that is used to save the
TCP/IP trace records.

SYSPRINT DD Defines the output printer. SYSPRINT
records can be either fixed or variable length.
For fixed-length records, logical record
lengths of 133 to 256 are accepted. For
variable-length records, logical record lengths
of 137 to 260 are accepted. In either case, the
maximum length of non-control printed data
is 255 bytes. The default is fixed 133-byte
length with blocking supported.

The following example shows the JCL that you can use to run the TCP/IP Trace
Utility.
//TRJOB1 JOB (1234,1234),’VANDYKE’,MSGCLASS=X,
// CLASS=A,NOTIFY=&SYSUID
//*
//DELETE EXEC PGM=IEFBR14
//DELFILE DD DSN=TCP.DATA.TRACE,DISP=(MOD,DELETE),
// SPACE=(TRK,(0))
//TCPDATRC EXEC PGM=ITPIPTRX,
// PARM=(’STACK=TCPIP,IP=9.190.124.72,’,
// ’PORT=6003,IDLE=180’)
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//TCPTRACE DD DSN=TCP.DATA.TRACE,
// DISP=(NEW,CATLG),UNIT=SYSALLDA,
// DCB=(RECFM=VB,LRECL=27994,BLKSIZE=27998),
// SPACE=(CYL,(1,1))
//SYSPRINT DD SYSOUT=A

Understanding TCP/IP Trace Utility return codes

The TCP/IP Trace Utility provides a return code to indicate the status of the
execution. The TCP/IP Trace Utility can return the following codes:

Code Meaning

0 The run was completed with no errors.

1004 An invalid or unknown parameter was
specified.

Chapter 13. Using the TCP/IP Trace Utility 169

|

|
|

|||

||

||
|
|

||
|

||
|

||
|

||
|

||
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|||

||

||
|

Code Meaning

1005 Storage was not available for TCP/IP Trace
Utility execution.

1008 The load of a WSim module failed.

1010 The ATTACH of the trace interface module
ITPIPTRC failed.

1012 The open of the WSim load library as a task
library failed.

1014 The SYSPRINT data set failed to open.

1015 The creation of a name or a token for this
trace instance failed.

1018 A request to start a new trace was invalid
because there was already a trace active for
this TSO/ISPF user.

1020 A STOP or QUERY request was received but
no TCP/IP trace is active.

1022 An output trace data set was not allocated to
the TCPTRACE DD.

1024 The data set type for the output trace data
set was invalid.

1025 Data set concatenation was invalid for the
TCPTRACE DD.

1030 The TCP/IP data trace task failed to process
the trace request.

1031 The TCP/IP stack name specified was not
known to TCP/IP.

1032 The trace failed due to an error returned by
the TCP/IP real-time application controlled
trace interface.

1035 The open of the TCP/IP data trace output
data set failed.

170 WSim V1R1 Utilities Guide

||

||
|

||

||
|

||
|

||

||
|

||
|
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|
|

||
|
|
|

Chapter 14. Using the TCP/IP Trace Formatting Utility

The TCP/IP Trace Formatting Utility produces a formatted report of the TCP/IP
trace records that are saved in a data set. The utility calls TCP/IP trace record
formatting Network Management Interface (NMI) to handle the formatting of trace
records.

The following sections describe more information about the TCP/IP Trace
Formatting Utility:
v Running the TCP/IP Trace Formatting Utility using the WSim/ISPF Interface
v Examples of JCL and a TSO CLIST

Running the TCP/IP Trace Formatting Utility

The TCP/IP Trace Formatting Utility requires as input a data set that contains
TCP/IP trace records. The JCL or TSO REXX/CLIST you use to run the formatting
utility provides the following locations:
v TCP/IP trace data set
v The printer

Using the WSim/ISPF Interface

You can run the TCP/IP Trace Formatting Utility from the WSim/ISPF Interface.
To do this, follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method that you

use to do this depends on how the WSim/ISPF Interface application is installed
at your site. If you are not sure how to do this, see your system programmer
for assistance.

2. Select option 4 from the WSim/ISPF Interface main panel and press Enter. The
TCP/IP Trace Processing menu is displayed.

Note: You can also type “TCPPROC” on the command line and press Enter to
display this panel.

3. Select option 2 from the TCP/IP Trace Processing menu and press Enter. The
Format a TCP/IP Data Trace panel is displayed.

Note: You can also type “TCPFMT” on the command line and press Enter to
display this panel.

4. Fill in the appropriate information on this panel and press Enter to run the
TCP/IP Trace Formatting Utility.

For more information on the WSim/ISPF Interface, see Chapter 2, “Running WSim
with the WSim/ISPF Interface,” on page 5

Using JCL

The following JCL statements are required to run the TCP/IP Trace Formatting
Utility on MVS.

© Copyright IBM Corp. 1985, 2015 171

|

|

|
|
|
|

|
|

|

|

|
|

|
|
|

|

|

|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

Statement Function

FTJOB1 JOB Initiates the job.

STEP1 EXEC Specifies the program name.

STEPLIB DD Defines the data set that contains the WSim
host processor modules.

TRACIN DD Specifies the data set that contains the
TCP/IP trace records.

SYSPRINT DD Defines the output printer. SYSPRINT
records can be either fixed or variable length.
For fixed-length records, logical record
lengths of 133 to 256 are accepted. For
variable-length records, logical record lengths
of 137 to 260 are accepted. In either case, the
maximum length of non-control printed data
is 255 bytes. The default is fixed 133-byte
length with blocking supported.

The following example shows an example of JCL that you can use to run the
TCP/IP Trace Formatting Utility.
//FTJOB1 JOB
//*
//STEP1 EXEC PGM=ITPIPFMT
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//TRACIN DD DSN=TCP.DATA.TRACE,DISP=SHR
//SYSPRINT DD SYSOUT=A

Using a TSO CLIST

The following example shows the TSO CLIST that you can use to run the TCP/IP
Trace Formatting Utility.
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(TRACIN) DSNAME(’TCP.DATA.TRACE’) SHR
CALL ’WSIM.SITPLOAD(ITPIPFMT)’
FREE DDNAME(SYSPRINT)
FREE DDNAME(TRACIN)

Understanding TCP/IP Trace Formatting Utility return codes

The TCP/IP Trace Formatting Utility provides a return code to indicate the status
of the execution. The TCP/IP Trace Formatting Utility can return the following
codes:

Header Header

0 The run was completed with no errors.

8 Storage was not available for TCP/IP Trace
Formatting Utility execution.

10 The TCP/IP trace data set failed to open.

12 The load of TCP/IP trace formatting stub
module EZBNMCTF failed.

16 The SETUP call to the TCP/IP trace
formatting interface EZBCTAPI failed.

18 An invalid TCP/IP trace record was found.

172 WSim V1R1 Utilities Guide

|||

||

||

||
|

||
|

||
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|
|

|||

||

||
|

||

||
|

||
|

||
|

Part 2. Script generating utilities

© Copyright IBM Corp. 1985, 2015 173

|

174 WSim V1R1 Utilities Guide

Chapter 15. Generating scripts interactively with IDC

The Interactive Data Capture (IDC) Utility ITPIDC provides a simple and
easy-to-use method of creating WSim scripts for simulated 3270 devices. IDC is a
stand-alone VTAM application program that can run under MVS. To create a WSim
script, you simply log on to an application through IDC from a real 3270 display
and perform the actions you want WSim to simulate. IDC records the interactions
between the display and the application and stores the captured SNA traffic in its
own log data set. No VTAM buffer or NPM VTAMLOG traces are needed with
IDC. IDC supports one 3270 display user (single session) at a time for each copy of
the IDC program executing.

The log created by IDC is compatible with the log created by a WSim simulation
run. As a result, you can format and print the IDC log with the Loglist Utility or
use it as input to the Response Time Utility. You can also compare the IDC log
with a WSim log from a simulation run to verify test results with the Log Compare
Utility.

From the log, IDC can create either a Structured Translator Language (STL)
program or a WSim Scripting Language message generation deck. Choosing the
Type of Script to Generate discusses the advantages and disadvantages of each
type.

From an SNA perspective, communication between a real 3270 device and a host
application program through IDC involves two sessions. The first session is
between IDC and the 3270 display. You establish this session when you log on to
IDC. IDC is the Primary Logical Unit (PLU) and the 3270 display is the Secondary
Logical Unit (SLU). The second session is between IDC and the host application.
You establish this session when you request a session with the host application
through IDC. In this session, IDC is the SLU and the host application is the PLU.

IDC acts as a bridge between these two sessions and passes data back and forth
between the 3270 display and the host application. This is shown in Figure 36.

IDC supports 3270 LU type 2 and LU type 0 SNA sessions.

Creating scripts with IDC involves the following tasks:
1. Setting up IDC
2. Starting IDC
3. Establishing sessions
4. Capturing data
5. Generating scripts
6. Stopping IDC
7. Modifying IDC generated scripts (optional)

┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│3270 S│ │P S│ │P VTAM │
│Display L│────
 │L ITPIDC L│────
 │L Application │
│Terminal U│ │U U│ │U Program │
└─────────────────┘ └─────────────────┘ └─────────────────┘

Figure 36. Interactive Data Capture session flow

© Copyright IBM Corp. 1985, 2015 175

8. Debugging problems between IDC, users, and applications (optional).

After you use IDC to generate a script, you need to create a network definition
(see Creating Network Definitions). WSim uses both the network definition and
script during the network simulation run. The network definition tells WSim what
devices to simulate and the script tells WSim what data those devices should send.

Before you begin, carefully plan what you want to do and what data you want to
capture to turn into WSim scripts. For information about planning a WSim test, see
WSim User's Guide.

Setting up IDC
WSim must first be installed to use IDC. See WSim User's Guide for information
about installing WSim.

You must perform the following steps to set up IDC:
1. Define IDC to VTAM
2. Allocate data sets for IDC.

Defining IDC to VTAM
To define IDC to VTAM, code a VTAM APPL definition statement under a VTAM
application program major node. For example:
ITPIDC APPL

The name coded on the APPL statement (ITPIDC in the example) can be any valid
VTAM APPL name. You need no additional operands for IDC. However, the
MODETAB= operand may be required to access the logon mode table used at your
installation. If you are running IDC from the WSim/ISPF Interface or executing
IDC with the TSOCON execution parameter, coding SESSLIM=YES on the APPL
statement is recommended since it forces a session limit of one for the IDC
application which is consistent with a real 3270 display. Do not code SESSLIM=YES
if you will not be running IDC from the WSim/ISPF Interface and the TSOCON
execution parameter willnot be used. Refer to VTAM Installation and Resource
Definition for details.

The APPL name you select depends on the requirements of the applications or
subsystems that you test. For example, to test a CICS® system that uses the
auto-install facility, choose an APPL name that conforms to CICS naming
conventions.

Multiple VTAM APPL definitions must be defined to support more than one copy
of IDC executing at the same time.

Allocating IDC data sets
To run IDC under MVS, you need to allocate or use an existing allocation for the
following data sets:

IDC log
This data set contains the captured data. The space needed for this data set
depends on the number of transactions and amount of data you are capturing.
Initially, allocate at least 150 blocks (5 cylinders of 3380 DASD or equivalent)
for this data set. For 3380 DASD, allocate this data set as a variable block,
sequential or partitioned data set with a record length of 23472 bytes and a
block size of 23476 bytes. For 3390 DASD, allocate this data set as a variable

176 WSim V1R1 Utilities Guide

block, sequential or partitioned data set with a record length of 27994 bytes
and a block size of 27998 bytes. For other DASD types, the block size should
be the largest value (less than or equal to 32760) that best uses the space
available on each track. The record length value must be 4 bytes less than the
block size value. This data set must be cataloged.

You may want to allocate multiple log data sets or allocate a partitioned log
data set depending on how you plan to use IDC. See “Changing log data sets”
on page 188 for a discussion of the use of multiple log data sets.

STL programs
This data set contains the generated STL programs. If you plan to generate STL
programs, allocate this as a fixed block, variable block, or variable data set
with a record length of at least 71 bytes and a block size compatible with the
record length. You may allocate this as either a partitioned or sequential data
set. The space needed for this data set depends on the number of user actions
and amount of data generated in the program. Initially, allocate at least 5
cylinders of 3380 DASD or equivalent space for this data set. This data set
must be cataloged.

You can also use existing data sets you normally use for STL programs.

WSim message generation decks
This data set contains the generated WSim Scripting Language message
generation decks. If you plan to generate message generation decks, allocate
this as a fixed block data set with a record length of 80 bytes and a block size
compatible with the record length. You may allocate this as either a partitioned
or sequential data set. The space needed for this data set depends on the
number of user actions and amount of data generated in the message
generation decks. Initially, allocate at least 5 cylinders of 3380 DASD or
equivalent for this data set. This data set must be cataloged.

You can also use existing data sets you normally use for WSim message
generation decks.

IDC defaults
This data set contains user-defined default values for IDC panel entry fields.
Allocate a fixed block, sequential data set with a record length of 2087 bytes
and a block size of 2087 bytes. You only need to allocate 1 block for this data
set.

IDC trace
This is an optional data set and is only needed for debugging communication
problems between IDC and displays or applications. (See “Analyzing the IDC
trace” on page 207 for more information.) The space needed for this data set
depends on the number of transactions and amount of data you are capturing.
Initially, allocate at least 150 blocks (5 cylinders of 3380 DASD or equivalent)
for this data set. For 3380 DASD, allocate this data set as a variable block,
sequential data set with a record length of 23472 bytes and a block size of
23476 bytes. For 3390 DASD, allocate this data set as a variable block,
sequential data set with a record length of 27994 bytes and a block size of
27998 bytes. For other DASD types, the block size should be the largest value
(less than or equal to 32760) that best uses the space available on each track.
The record length value must be 4 bytes less than the block size value.

Remember, the sizes given above are just estimates to get you safely started. You
should base any long range predictions for space requirements on expected use
and experience with IDC.

Chapter 15. Generating scripts interactively with IDC 177

Note: IDC does not support tape data sets.

Starting IDC
Once you set up IDC, you then can start the IDC utility. IDC runs as a stand-alone
VTAM application program. You do not need to run WSim to use IDC. IDC
supports only a single user at a time. If multiple users want to use IDC at the
same time, each must have a separate copy of IDC.

Defining the IDC job stream
Under MVS, you can run IDC as a batch job, as a started procedure, as a CLIST or
EXEC under TSO, or by way of the WSim/ISPF Interface.

Running IDC from the WSim/ISPF Interface
To invoke IDC from the WSim/ISPF Interface, follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 3 from the WSim/ISPF Interface main panel and press Enter. The
Interactive Capture and Build Message Decks and STL Programs panel is
displayed.

Note: You can also type “IDC” on the WSim/ISPF Interface main panel
command line and press Enter to display this panel.

3. Fill in the appropriate fields on this panel and press Enter to run IDC.

For more information on the WSim/ISPF Interface, refer to Part 1, “General
utilities,” on page 1.

Running IDC as an MVS batch job
Below shows the JCL to run IDC as an MVS batch job. Note that the optional
execution parameters “NOWTOR,NOWTO” are coded to suppress all IDC console
messages. You need to use option 4 (End IDC) from the IDC Main panel (Figure 37
on page 182) to end the IDC utility with this example.
//IDC JOB
//ITPIDC EXEC PGM=ITPIDC,PARM=’NOWTOR,NOWTO’
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//IDCDFLTS DD DSN=WSIM.IDCDFLTS,DISP=OLD

If you code the “TRACE” execution parameter, add the following line:
//IDCTRACE DD DSN=WSIM.IDCTRACE,DISP=OLD

Running IDC as an MVS started procedure
The JCL to run IDC as an MVS started procedure is shown in the example below.
You need to place the JCL in SYS1.PROCLIB or the appropriate data set for your
system. To end the IDC utility, you need to use option 4 (End IDC) from the IDC
Main panel (Figure 37 on page 182) or issue the MVS stop (P IDC) or modify (F)
END command.
//IDC PROC
//ITPIDC EXEC PGM=ITPIDC
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR

178 WSim V1R1 Utilities Guide

//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//IDCDFLTS DD DSN=WSIM.IDCDFLTS,DISP=OLD

If you code the “TRACE” execution parameter, add the following line:
//IDCTRACE DD DSN=WSIM.IDCTRACE,DISP=OLD

Running IDC from a CLIST
The example below shows the CLIST commands to run IDC under TSO without
the TSOCON execution parameter.
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(SYSUT1) UNIT(SYSALLDA) SPACE(1,1) CYL
ALLOC DDNAME(IDCDFLTS) DATASET(’WSIM.IDCDFLTS’) OLD
CALL ’WSIM.SITPLOAD(ITPIDC)’
FREE DDNAME(SYSPRINT SYSUT1 IDCDFLTS)

The following example shows the CLIST commands to run IDC under TSO with
the TSOCON execution parameter.
CONTROL NOMSG
FREE DDNAME(SYSPRINT SYSUT1 IDCDFLTS IDCTRACE)
CONTROL MSG
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(SYSUT1) UNIT(SYSALLDA) SPACE(1,1) CYL
ALLOC DDNAME(IDCDFLTS) DATASET(’WSIM.IDCDFLTS’) OLD
SET SYSOUTTRAP = 2
PROFILE
DO &I = 1 TO &SYSOUTTRAP

SET STRING = &&SYSOUTLINE&I
SET INDEX = &SYSINDEX(NOINTERCOM,&STRING)
IF &INDEX > 0 THEN +

SET NOINTERCOM = 1
END
IF &NOINTERCOM ¬= 1 THEN +

PROFILE NOINTERCOM
SET SYSOUTTRAP = 0
CALL ’WSIM.SITPLOAD(ITPIDC)’ ’TSOCON’
SET RC = &LASTRC
IF &RC > 0 THEN +

DO
WRITE IDC ended with return code &RC.
WRITE Refer to the IDC log data set for error messages.

END
IF &NOINTERCOM ¬= 1 THEN +

PROFILE INTERCOM
CONTROL NOMSG
FREE DDNAME(SYSPRINT SYSUT1 IDCDFLTS)
CONTROL MSG
EXIT

If you code the “TRACE” execution parameter, add an ALLOCATE and a FREE
statement for the IDCTRACE data set.
ALLOC DDNAME(IDCTRACE) DATASET(’WSIM.IDCTRACE’) OLD...
FREE DDNAME(IDCTRACE)

Specifying execution parameters
You can specify the following optional execution parameters when you run IDC:

APPLID=name
Specifies the VTAM application identifier for the Access Method Control Block
(ACB). name can be any 1 to 8 character alphanumeric name that VTAM

Chapter 15. Generating scripts interactively with IDC 179

accepts as a valid application identifier. This is the name coded on the VTAM
APPL statement for IDC. If you do not specify a value for name, IDC uses
ITPIDC as the default value for this execution parameter.

CKBNDQRY
Causes IDC to check the 3270 Query Reply bit in the BIND (byte 15, bit 0). If
the bit is on, IDC sends a 3270 query to the device to determine what functions
the display supports. If the bit is off, IDC does not send the query. If you do
not code this parameter, IDC will always send the query.

You would code this parameter in situations where an exception response,
generated by a display not supporting 3270 Query, would cause the session
with IDC to be aborted without allowing IDC to recover. This situation
sometimes occurs when intermediate VTAM applications are between the 3270
display and IDC.

DEBUG
Causes comments to be inserted into the generated scripts before each group of
generated statements. Each comment indicates the time of day and sequence
number of the record in the IDC log data set used to generate the statements
following the comment.

A sample comment for STL programs is shown below.
/*-- 07582389 00001 */

A sample comment for WSim message generation decks is shown below.
*-- 07582389 00001

In the above example, the first number is the time of day, in the format
HHMMSSTH. The second number is the sequence number of the log record
used to generate the statements following the comment.

Use the DEBUG parameter as a debugging aid for script generation. If you do
not specify the DEBUG parameter, these comments are not inserted into the
generated scripts.

NOWTO
Suppresses WTO (Write to Operator) informational messages while IDC is
executing. You can use this execution parameter if you submit the IDC job
stream as a batch job and do not want the IDC messages to appear on the
system console.

NOWTOR
Suppresses WTORs (Write to Operator with Reply) while IDC is executing.
Coding NOWTOR allows you to run ITPIDC without operator intervention.
When IDC runs under MVS as a submitted batch job or under TSO without
the TSOCON option, IDC issues a WTOR to allow you to respond with the
END command when it is time to end IDC. When running under MVS as a
started procedure, IDC does not issue a WTOR and you can use an MVS stop
(P) or modify (F) END command to end IDC. Code NOWTOR when you do
not want operator intervention and plan to end IDC by selecting option 4 from
the IDC Main panel (see Figure 37 on page 182). You can always end IDC by
selecting option 4 from the IDC Main panel.

PRTLNCNT=nnn
Specifies the maximum number of lines that can be printed on a page of
SYSPRINT output before ejecting to a new page. nnn is an integer from 35 to
255. The default value for nnn is 60.

180 WSim V1R1 Utilities Guide

ROUTCDE=(n,n,...)
Specifies the system message routing codes to be used when IDC writes
messages to the operator. Each n is a system routing code that defines a
console destination for every WTO and WTOR message that IDC writes. n is
an integer from 1 to 16. The default value for ROUTCDE is 8.

TRACE
Creates a log of all traffic on both IDC sessions (PLU and SLU) in the IDC
trace data set. You must code an IDCTRACE DD statement in the IDC job
stream to use this option.

This parameter is usually used for debug purposes only. If you do not specify
TRACE, IDC does not write any data to the trace data set.

TSOCON
Allows you to run ITPIDC from the TSO console. When you specify TSOCON,
you do not need to log on to ITPIDC; the IDC Main panel is immediately
displayed (see Figure 37 on page 182). If you want to logon to ITPIDC as a
VTAM application, do not specify TSOCON. Also, if you specify TSOCON
when TSO is not active, it is ignored.

Note: You must have TSO/VTAM on your system to use TSOCON.

Establishing sessions
Once IDC is running, you may log on to IDC and then, through IDC, log on to the
host application.

Logging on to IDC
Log on to IDC using the procedures defined at your installation for VTAM
applications (IDC does not provide any built-in security, such as passwords or
authorizations to restrict user access.)

When logon processing completes, IDC displays the panel shown in Figure 37 on
page 182. To select an option on this panel, either type the option number in the
entry field or use the tab or new line keys to position the cursor on the desired
option. Press Enter to complete the selection.

From this panel, you can select the following options:
1. Start a session with a host application and capture data.

This option displays the IDC Start Session panel (Figure 38 on page 183).
2. Generate an STL program from captured data.

This option displays the IDC Generate STL Program panel (Figure 43 on page
191).

3. Generate a message generation deck from captured data.

This option displays the IDC Generate Message Generation Deck panel
(Figure 44 on page 195).

4. End the IDC utility program.

This option ends the IDC program (and, of course, ends your session with
IDC). You can use this option when you want to end the IDC program without
intervention from the system operator. Do not confuse this with the F3 or F12
actions, which only end your session with IDC.

You can use the following function keys on this panel:

Chapter 15. Generating scripts interactively with IDC 181

F1 (Help) Display help information for this panel (see “Using help” on page 206).

F3 (Exit) End your session with IDC. This logs you off IDC, but the program itself
remains active and ready to accept another logon.

F12 (Cancel) For this panel, F12 invokes the same action as F3 (Exit).

Note: If you specified the TSOCON execution parameter, you do not need to logon
to IDC. The IDC Main panel is immediately displayed.

Logging on to your application
When you select option 1 from the IDC Main panel (Figure 37), IDC displays the
IDC Start Session panel (Figure 38 on page 183). The IDC Start Session panel
establishes the session between IDC and the host application.

IDCMAIN WSim Interactive Data Capture (IDC) Utility

Select one of the following, then press Enter.

1. Start a session with a host application and capture data

2. Generate an STL program from captured data
3. Generate a message generation deck from captured data

4. End the IDC utility program

WSim Version 1 Release 1.0.0 Program Number 5655-I39
Licensed Materials - Property of IBM
5655-I39 (C) Copyright IBM Corporation 1976, 2002. All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corporation.
F1=Help F3=Exit F12=Cancel

Figure 37. IDC main panel

182 WSim V1R1 Utilities Guide

Fill in the following entry fields and press Enter when you finish.

Host application name
Type the name of the host application to which you want to logon and capture
data.

Logon mode entry name
Type the name of the logon mode table entry to be used when establishing the
host application session. This field is optional; the default is the logon mode
name used when you logged on to IDC. If you use the TSOCON option, the
logon mode that best fits the characteristics of the TSO console is displayed.
One of the following logon modes is displayed: LSX32702, LSX32703,
LSX32704, LSX32705, or D329001. These logon modes are in the standard
VTAM logon mode table. Unless you choose to override the logon mode name,
the logon mode table you use should contain each of these modes defined as
they are in the standard VTAM logon mode table. If you use a different logon
mode name, be sure to use a logon mode with compatible session protocols.

Logon user data
Type any other data you want to enter in the host application logon sequence,
such as a user ID. This field is optional; the default is the user data you
entered (if any) when you logged onto IDC, up to 25 bytes.

Log data set name
Type the name of the data set where you will save the captured data.

Type a name up to 36 characters in length, including a member name in
parentheses if you are using a partitioned data set. Do not enclose the name in
quotes. You must allocate and catalog this data set in advance (see “Setting up
IDC” on page 176).

Append captured data to IDC log data set
Type an “R” (replace) to write over any previously captured data in the log
data set. Type an “A” to append new captured data to the log data set. (If you
use a partitioned log data set, you can only specify replace. Replace will create
a new member if the member does not already exist.)

IDCSSP WSim IDC: Start Session with Host Application

Type information, then press Enter.

Session Data
Host application name ________
Logon mode name ________ (Optional)
Logon user data _________________________ (Optional)

IDC log data set name WSIM.IDCLOG_________________________
If data set already exists, specify R (R=Replace or A=Append)

Start capturing data immediately? . . Y (Y=Yes or N=No)

IDC Escape key PA1__ (PAn, PFnn, CLEAR, or ATTN)

F1=Help F3=Exit F5=Refresh F11=Save F12=Cancel

Figure 38. IDC start session panel

Chapter 15. Generating scripts interactively with IDC 183

Start capturing data when session active
Type “Y” to automatically start capturing data when the host application
session first becomes active. Type “N” to manually control when IDC starts
capturing data. If you type “N”, you can manually start data capture from the
IDC Escape Actions panel (see “Using escape actions”).

IDC Escape key
Type the name of the key you want to use to toggle between IDC and the host
application. You can enter any PA key, any function key, CLEAR, or ATTN in
this field. Choose a key that is available on your keyboard, but not used by
your application. If that is not possible, the IDC escape key can be passed to
your host application when necessary (see “Using escape actions”).

Note: When using ATTN as the IDC escape key, PROG416, PROG707, or
PROG709 may briefly appear in the operator information area of your display.
Also, you cannot use ATTN as a valid escape key when you run IDC with the
TSOCON option.

You can use the following function keys on this panel:

F1 (Help) Display help information for this panel (see “Using help” on page 206).

F3 (Exit) End your session with IDC. This logs you off IDC, but the program itself
remains active and ready to accept another logon.

F5 (Refresh) Restore previously saved values to the entry fields and erase all other
entries.

F11 (Save) Save the current values of the entry fields.

F12 (Cancel) Return to the IDC Main panel.

When IDC establishes the host session, data from the host application appears on
the display and IDC becomes transparent to both you and your host application. 1

If the host session cannot be started successfully, one or more error messages
appear in the message area at the bottom of the panel. Numbered messages are
described in WSim Messages and Codes.

Capturing the data
Once you log on to a host application through IDC, you can start capturing session
data. The sections below discuss how to do this.

Capturing the session initiation
If you request to immediately capture data on the IDC Start Session panel, IDC
captures the session initiation SNA data flows between the host application and
IDC. IDC uses this data to generate the logon sequence in the WSim script.

Using escape actions
If you need access to IDC while you are in session with the host application, press
the escape key you defined on the IDC Start Session panel (Figure 38 on page 183).
IDC responds to the escape key by displaying the IDC Escape Actions panel
(Figure 39 on page 185).

1. IDC is not always completely transparent. See “Understanding IDC restrictions” on page 207.

184 WSim V1R1 Utilities Guide

To select an option on this panel, either type the option number in the entry field
or use the tab or new line key to position the cursor on the desired option. Press
Enter to complete the selection.

You can select the following options from this panel:
1. Start capturing data.

2. Stop capturing data.

3. End the session with the host application.

This option terminates the session between IDC and the host application and
displays the IDC Start Session panel (Figure 38 on page 183).

4. Add STL statements directly to the IDC log.

This option displays the IDC Add STL Statements panel (Figure 40 on page
187).

5. Add WSim scripting language statements directly to the IDC log.

This option displays the IDC Add Scripting Language Statements panel
(Figure 40 on page 187).

6. Change IDC log data sets.

This option displays the IDC Change Log Data Sets panel (Figure 41 on page
188).

7. Reset logging to the beginning of the data set or appended data.

This option allows you to start over if you make a mistake while capturing
data. If you are writing to a new IDC log data set or replacing an existing IDC
log data set, logging starts over at the beginning of the data set. If you are
appending data to an existing IDC log data set, logging starts over at the
beginning of the appended data.

8. Pass the escape key to the host application.

This option sends the data generated by the escape key to the host application.
If you press the escape key during an IDC session, IDC intercepts the escape
key and does not pass it to the host application.

9. Change the IDC escape key.

IDCESCA WSim IDC: Escape Actions

Select one of the following, then press Enter.
Note: Options 4-9 do not change the current data capture status.

_ 1. Start capturing data
2. Stop capturing data
3. End the session with the host application

4. Add STL statements directly to the IDC log

5. Add WSim scripting language statements directly to the IDC log

6. Change IDC log data sets
7. Reset logging to the beginning of the data set or appended data

8. Pass the escape key to the host application
9. Change the IDC escape key

Data capture status . . : ON
Current IDC log data set: WSIM.IDCLOG
Current escape key . . : PA1

F1=Help F3=Exit F12=Cancel

Figure 39. IDC escape actions panel

Chapter 15. Generating scripts interactively with IDC 185

This option displays the IDC Change Escape Key panel (Figure 42 on page 190).

You can use the following function keys on this panel:

F1 (Help) Display help information for this panel (see “Using help” on page 206).

F3 (Exit) Leave this panel and return to the host application session.

F12 (Cancel) For this panel, F12 invokes the same action as F3 (Exit).

Controlling data capture
You may not want to capture all of your interactions with the host application.
Rather, you may want to create a script that only performs a specific transaction,
such as querying an account balance in a banking application. To do this, do not
begin capturing data immediately. Instead, wait to start capturing data until you
are logged on and ready to invoke the query transaction. You then start capturing
data, invoke the query transaction, and when the transaction completes, stop
capturing data.

The sequence of actions you perform is described below:
1. Specify “N” (No) for “Start capturing data immediately?” on the IDC Start

Session panel (Figure 38 on page 183).
2. Interact with the host application to get to the panel that performs the query

operation.
3. Press the IDC escape key. IDC displays the IDC Escape Actions panel

(Figure 39 on page 185). Data capture status is “OFF” at this point.
4. Select option 1 to start capturing data. Verify that the capture status changes

to “ON”.
5. Press F12 to return to the host application query panel.
6. Perform the query transaction (or transactions).
7. Press the IDC escape key.
8. Select option 2 to stop capturing data.
9. Press F12 to return to the host application query panel.

10. Log off the application normally.

Adding statements to the IDC log
IDC allows you to add statements directly to the IDC log. When you generate the
script, IDC copies these statements to the script at the same point in the data as
they were added to the IDC log.

You can add either STL statements or WSim Scripting Language statements. There
is a separate IDC Escape Actions panel option and corresponding entry panel for
each. If you add STL statements to the IDC log and then decide to generate a
message generation deck instead of an STL program, the STL statements are
ignored. The same is true for WSim Scripting Language statements if you generate
an STL program instead of a message generation deck.

Some examples of statements (in STL) that you may add are shown below:
v Comments

/* Test script number 1, created by Jane Smith on 7/1/02. */

v Messages written to the operator's console
say ’End of query testing, starting update testing.’

v WSim operator commands

186 WSim V1R1 Utilities Guide

opcmnd(’ZEND’) /* Close down WSim */

v Logic tests. The following STL statements will wait for the specified data to be
displayed on the screen.
check_data = ’ISPF/PDF PRIMARY OPTION MENU’
do while index(screen,check_data) = 0

wait until onin
end

Note: IDC does not perform syntax checking on the statements you add! IDC adds
your statements exactly as you enter them.

If you make an error in an added STL statement, it will be flagged when you run
the generated STL program through the STL Translator. If you make an error in an
added WSim Scripting Language statement, it will be flagged when you preprocess
the network and message decks with the Preprocessor Utility. If you generate
WSim message generation decks and have IDC place them directly in the WSim
MSGDD data set, any errors will be flagged when the network referencing the
decks is initialized. In all these cases, you can check the error message and correct
the problem in the generated script without having to recapture any of the data.

Selecting option 4 or 5 from the IDC Escape Actions panel (Figure 39 on page 185)
displays an IDC Add Statements panel. The panel for STL is shown in Figure 40;
there is a similar panel for the WSim Scripting Language.

If you plan to add numerous statements to the script, generate the script first and
then add the statements later using an editor.

For information about the WSim Scripting Language and STL, see Creating WSim
Scripts and WSim Script Guide and Reference.

You can use the following function keys on this panel:

F1 (Help) Display help information for this panel (see “Using help” on page 206).

F2 (Add) Add the statements to the IDC log.

IDCESC4 WSim IDC: Add STL Statements to IDC Log

Type STL Statements, then press F2.

----+----1----+----2----+----3----+----4----+----5----+----6----+----7-
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

F1=Help F2=Add F3=Exit F5=Refresh F11=Save F12=Cancel

Figure 40. IDC add STL statements panel

Chapter 15. Generating scripts interactively with IDC 187

F3 (Exit) End escape actions and return to the host application.

F5 (Refresh) Restore previously saved values to the entry fields.

F11 (Save) Save the current values of the entry fields.

F12 (Cancel) Return to the IDC Escape Actions panel.

Note: Pressing F3 or F12 before pressing F2 causes any statements you typed to be
discarded.

Changing log data sets
One IDC log can only create one script. If you want to create multiple scripts from
a single capture session, you must create multiple IDC logs.

For example, you may want to create separate scripts for entering, updating, and
querying data in a database. To do this, you can log on to the database application,
capture the data for the entry operation, log off the application, generate the script,
and then repeat those steps for the update and the query operations.

Alternately, you can log on to the database application, capture each operation in a
separate IDC log data set or member, log off the application, and then generate the
scripts. This eliminates the need to log on and off the application for each script.

Selecting option 6 from the IDC Escape Actions panel (Figure 39 on page 185)
displays the IDC Change Log Data Sets panel (Figure 41).

Note: You must allocate and catalog data sets in advance; IDC will not do it for
you. However, if you use a partitioned data set, you can add new members to or
replace existing members in an existing data set.
Fill in the following fields and press Enter:

New IDC log data set name
Type the name of the data set where you will save the captured data.

IDCESC6 WSim IDC: Change IDC Log Data Sets

Type information, then press Enter.

New IDC log data set name WSIM.IDCLOG_________________________

If data set already exists, specify R (R=Replace or A=Append)

Data capture status : ON

Current IDC log data set : WSIM.IDCLOG

F1=Help F3=Exit F12=Cancel

Figure 41. IDC change log data sets panel

188 WSim V1R1 Utilities Guide

Type a name up to 36 characters in length, including a member name in
parentheses if you are using a partitioned data set. Do not enclose the name in
quotes. You must allocate and catalog this data set in advance (see “Setting up
IDC” on page 176).

Replace or Append captured data to IDC log data set
Type an “R” (replace) to write over any previously captured data in the log
data set. Type an “A” to append new captured data to the log data set. (If you
use a partitioned log data set, you can only specify replace.)

You can use the following function keys on this panel:

F1 (Help) Display help information for this panel (see “Using help” on page 206).

F3 (Exit) End escape actions and return to the host application.

F12 (Cancel) Return to the IDC Escape Actions panel.

Note: Pressing F3 or F12 before pressing Enter cancels the change.

Changing escape keys
You may discover after you log on to your host application that you need to
change the IDC escape key. For example, you assign F5 as the IDC escape key and
find that you use F5 repeatedly for the host application. To change your escape
key, select option 9 from the IDC Escape Actions panel (Figure 39 on page 185).
This displays the IDC Change Escape Key panel (Figure 42 on page 190). Be sure to
choose a key that is actually available on your keyboard. IDC does not object if
you choose F13 when your keyboard only has 12 function keys. You cannot use
ATTN as a valid escape key when you run IDC with the TSOCON option.

(You can also use option 8 from the IDC Escape Actions panel to send the escape
key to the host application.)

Note: If you change the escape key and then immediately select option 8 on the
IDC Escape Actions panel to send the new escape key to the host application, you
will get an error message. This is because IDC needs to receive the actual data the
display would send for the new escape key.

Chapter 15. Generating scripts interactively with IDC 189

You can use the following function keys on this panel:

F1 (Help) Display help information for this panel (see “Using help” on page 206).

F3 (Exit) End escape actions and return to the host application.

F12 (Cancel) Return to the IDC Escape Actions panel.

Note: Pressing F3 or F12 before pressing Enter cancels the change.

Capturing session termination
There are two ways to capture a session termination sequence.
1. Log off the application normally. IDC converts all of the user actions into

statements in the generated script.
2. Select option 3 from the IDC Escape Actions panel (Figure 39 on page 185). The

program converts the captured SNA session termination flows into the WSim
TERMSESS command in the generated script.

Stopping IDC
You can use the following methods to stop IDC:
1. Reply to the IDC WTOR at the operator's console with the “END” command.
2. Select option 4 from the IDC Main panel (Figure 37 on page 182).
3. Issue the MVS stop (P) command or the MVS modify (F) command with the

“END” operand when IDC is running on MVS as a started procedure.

Note: If you specified the TSOCON execution parameter, you can select option 4,
press F3, or press F12 from the IDC Main panel to stop IDC.

IDCESC9 WSim IDC: Change Escape Key

Type information, then press Enter.

New IDC escape key PA1__ (PAn, PFnn, CLEAR, or ATTN)

Current escape key : PA1

F1=Help F3=Exit F12=Cancel

Figure 42. IDC change escape key panel

190 WSim V1R1 Utilities Guide

Generating scripts
When you finish capturing your data, you can generate either a STL program or a
WSim Scripting Language message generation deck. The following sections
describe how to generate a script.

Choosing the type of script to generate
As mentioned earlier, IDC creates either an STL program or a message generation
deck. The choice of format depends on how you plan to use the scripts.

Generate an STL program if you expect to modify the script created by IDC. If you
are a new user, you should write scripts in STL since it is easier to learn and use.
You must process the STL program created by IDC using the STL Translator. The
STL Translator converts the STL program into a message generation deck which
can be executed by WSim.

Generate a message generation deck if you do not plan to modify the scripts
created by IDC or if you are already familiar with the WSim Scripting Language.
Since the message generation deck is directly executable by WSim, you eliminate
the translation step required when using STL.

You can read about the WSim Scripting Language and STL in Creating WSim Scripts
and WSim Script Guide and Reference.

Generating an STL program
Selecting option 2 from the IDC Main panel (Figure 37 on page 182) displays the
IDC Generate STL Program panel (Figure 43).

Fill in the following fields and press Enter.

IDC log data set name
Type the name of the data set containing the captured data.

IDCSGS WSim IDC: Generate STL Program

Type information, then press Enter.

IDC log data set name WSIM.IDCLOG_________________________

STL Program

Data set name WSIM.MSGFILE________________________
Procedure name (MSGTXT name) ________
Trace name (@PROGRAM name) ________ (Optional)

Data generated? A (A=All or C=Changed)

Verify panel data? N (Y=Yes or N=No)
Row ___ (1-255)
Column ___ (1-255)
Length _____ (1-32000)

Generate actual user delays? N (Y=Yes or N=No)
WSim UTI value to use . . . ____ (1-6000)
WSim think-time rule to use _ (U=Unlock or I=Immediate)

F1=Help F3=Exit F5=Refresh F11=Save F12=Cancel

Figure 43. IDC generate STL program panel

Chapter 15. Generating scripts interactively with IDC 191

Type a name up to 36 characters in length, including a member name in
parentheses if you are using a partitioned data set. Do not enclose the name in
quotes.

STL program data set name
Type the name of the data set in which you want the generated STL program
to be placed.

Type a name up to 36 characters in length, optionally including a member
name in parentheses if you are using a partitioned data set. Do not enclose the
name in quotes. You must allocate and catalog this data set in advance (see
“Setting up IDC” on page 176).

STL program procedure name (MSGTXT name)
Type the procedure name of the STL program. This name appears as the label
for the MSGTXT statement. This is also the default name of the member
created if you are using a partitioned data set for the STL programs.

The name must be 1 to 8 alphanumeric or special ($,@,_,?,#) characters, where
the first character is non-numeric. The name cannot be an STL reserved word
or begin with $INC, $LA, or $SET (reserved labels in STL). Also, you cannot
use the same name as the STL program trace name.

STL program trace name (@PROGRAM name)
Type the name you want to appear on the STL @PROGRAM statement. (The
@PROGRAM statement defines a symbolic name used to label STL trace
records.) This field is required if you want to trace the execution of your STL
program at WSim run time or query the STL statement number during
execution.

The name must be 1 to 8 alphanumeric or special ($,@,_,?,#) characters, where
the first character is non-numeric. The name cannot be an STL reserved word
or begin with $INC, $LA, or $SET (reserved labels in STL). Also, you cannot
use the same name as the STL program procedure name.

Data generated?
Type an “A” if you want IDC to generate scripting statements for all the
unprotected fields on the screen containing data sent to the application
program. This includes unprotected fields set by the application with the MDT
bit on that you did not change during the data capture session. Type a “C” if
you want IDC to generate scripting statements for only the unprotected fields
that you actually changed during the data capture session. Unprotected fields
set by the application with the MDT bit on are ignored for script generation.

Note: Unprotected fields with the 3270 Modified Data Tag (MDT) bit set on
are sent to the application program when you press Enter or a function key.

Verify panel data?
Type a “Y” if you want IDC to generate a script with statements that test data
in the specified panel location (row and column). Type an “N” if you do not
want IDC to generate panel verification statements. See “Adding panel
verification logic to the script” on page 197 for a discussion of this option.

Row
Type the row number of the panel data to be verified. This must be a number
between 1 and 255.

Column
Type the column number of the panel data to be verified. This must be a
number between 1 and 255.

192 WSim V1R1 Utilities Guide

Length
Type the length of the data, starting at the row and column numbers stated
above, that you want verified. The maximum is 32000 characters.

Generate actual user delays?
Type a “Y” if you want IDC to generate DELAY statements to reproduce the
recorded user delays. Type an “N” if you do not want DELAY statements to be
generated. See “Generating user delays” on page 202 for a discussion of this
option and Creating WSim Scripts for a discussion of WSim intermessage
delays.

WSim UTI value to use
Type the user time interval value (in hundredths of a second) to use in
calculating delays. This must be a number between 1 (representing .01 seconds)
and 6000 (representing 1 minute).

WSim think-time rule to use
Type an “I” if you want IDC to use the immediate think-time rule for
calculating delays. Type a “U” if you want IDC to use the unlock think-time
rule for calculating delays.

Note: If you want to simulate LU type 2 devices, type a “U” here and code
THKTIME=UNLOCK in your network definition.

Remember, you must translate STL programs (using the STL Translator Utility)
before they can be executed by WSim.

Below is an example of an STL program created by IDC.
@program=STLDECKT
STLDECK: msgtxt
/*---*/
/* ITPIDC: DISPLAY=WSIM420 APPLICATION=TSO01 07:58:23.89 02/16/02*/
/* ----------- DISPLAY CHARACTERISTICS AND FEATURES ------------ */
/* ALTCSET=APL APLCSID=(963,310) */
/* BASECSID=(697,37) CCSIZE=(12,22) COLOR=MULTI */
/* DBCS=NO */
/* DISPLAY=(24,80,24,80) DLOGMOD=NSX32702 EXTFUN=YES */
/* FLDOUTLN=NO FLDVALID=NO HIGHLITE=YES */
/* MAXNOPTN=0 PS=NONE UOM=INCH */
/*---*/
/* ITPLSGEN: SCRIPT GENERATION PARAMETERS 08:05:35.00 02/16/02*/
/* INPUT WSIM.IDCLOG */
/* OUTPUT WSIM.STLFILE */
/* MSGTXT STLDECK */
/* NODELAY */
/* GENERATE ALL */
/* LU IDCSLU-1 */
/* STL TRACE=STLDECKT */
/* NOVERIFY */
/*---*/

onin0001: onin substr(ru,1,1) = ’F5’x,
then found = on

found = off
initself(’TSO01’,’NSX32702’)
do while found = off /* wait for onin0001 data received */
wait until onin
end
deact onin0001

Chapter 15. Generating scripts interactively with IDC 193

/* 07:58:29.36 ITP1507I SESSION STARTED WITH APPLICATION TSO01 */

/* 07:58:31.83 ITP1508I SESSION ENDED WITH APPLICATION TSO01 */

/* 07:58:31.99 ITP1507I SESSION STARTED WITH APPLICATION TSO0102 */

cursor(1,27)
ereof
cursor(2,1)
type ’user5’
transmit using enter

transmit using enter

transmit using clear

cursor(2,15)
ereof
type ’3.4’
transmit using enter

cursor(8,23)
ereof
type ’sys1’
transmit using enter

cursor(2,15)
ereof
type ’=x’
transmit using enter

cursor(1,9)
ereof
cursor(2,1)
type ’logoff’
transmit using enter

/* 08:00:25.30 ITP1508I SESSION ENDED WITH APPLICATION TSO0102 */

endtxt

Generating a message generation deck
Selecting option 3 from the IDC Main panel (Figure 37 on page 182) displays the
IDC Generate Message Generation Deck panel (Figure 44 on page 195).

194 WSim V1R1 Utilities Guide

Fill in the following fields and press Enter:

IDC log data set name
Type the name of the data set containing the captured data.

Type a name up to 36 characters in length, including a member name in
parentheses if you are using a partitioned data set. Do not enclose the name in
quotes.

Message Generation Deck data set name
Type the name of the data set in which you want the message generation deck
to be placed.

Type a name up to 36 characters in length, optionally including a member
name in parentheses if you are using a partitioned data set. Do not enclose the
name in quotes. You must allocate and catalog this data set in advance (see
“Setting up IDC” on page 176).

Message Generation Deck name (MSGTXT name)
Type the name of the message generation deck. This name appears in the name
field of the MSGTXT statement. This is also the default name of the member
created if you are using a partitioned data set for the message generation deck.

The name must be 1 to 8 alphanumeric or special ($,@,_,?,#) characters, where
the first character is non-numeric.

Data generated?
Type an “A” if you want IDC to generate scripting statements for all the
unprotected fields on the screen containing data sent to the application
program. This includes unprotected fields set by the application with the MDT
bit on that you did not change during the data capture session. Type a “C” if
you want IDC to generate scripting statements for only the unprotected fields
that you actually changed during the data capture session. Unprotected fields
set by the application with the MDT bit on are ignored for script generation.

Note: Unprotected fields with the 3270 Modified Data Tag (MDT) bit set on
are sent to the application program when you press Enter or a function key.

IDCSGT WSim IDC: Generate Message Generation Deck

Type information, then press Enter.

IDC log data set name WSIM.IDCLOG_________________________

Message Generation Deck
Data set name WSIM.MSGFILE________________________
Deck name (MSGTXT name) . . ________

Data generated? A (A=All or C=Changed)

Verify panel data? N (Y=Yes or N=No)
Row ___ (1-255)
Column ___ (1-255)
Length _____ (1-32000)

Generate actual user delays? N (Y=Yes or N=No)
WSim UTI value to use . . . ____ (1-6000)
WSim think-time rule to use _ (U=Unlock or I=Immediate)

F1=Help F3=Exit F5=Refresh F11=Save F12=Cancel

Figure 44. IDC generate message generation deck panel

Chapter 15. Generating scripts interactively with IDC 195

Verify panel data?
Type a “Y” if you want IDC to generate a script with statements to test data in
the specified panel location (row and column). Type an “N” if you do not want
IDC to generate panel verification statements. (See “Adding panel verification
logic to the script” on page 197 for a discussion of this option.)

Row
Type the row number of the panel data to be verified. This must be a number
between 1 and 255.

Column
Type the column number of the panel data to be verified. This must be a
number between 1 and 255.

Length
Type the length of the data, starting at the row and column numbers stated
above, that you want verified. The maximum is 32000 characters.

Generate actual user delays?
Type a “Y” if you want IDC to generate DELAY statements to reproduce the
recorded user delays. Type an “N” if you do not want DELAY statements to be
generated. (See “Generating user delays” on page 202 for a discussion of this
option and Creating WSim Scripts for a discussion of WSim intermessage
delays.)

WSim UTI value to use
Type the user time interval value (in hundredths of a second) to use in
calculating delays. This must be a number between 1 (representing .01 seconds)
and 6000 (representing 1 minute).

WSim think-time rule to use
Type an “I” if you want IDC to use the immediate think-time rule for
calculating delays. Type a “U” if you want IDC to use the unlock think-time
rule for calculating delays.

Remember, message generation decks are written in the WSim Scripting Language,
which is directly executable by WSim.

Below is an example of a message generation deck created by IDC.
WSIMDECK MSGTXT
*--
* ITPIDC: DISPLAY=WSIM420 APPLICATION=TSO01 07:58:23.89 02/16/02
* ----------- DISPLAY CHARACTERISTICS AND FEATURES ------------
* ALTCSET=APL APLCSID=(963,310)
* BASECSID=(697,37) CCSIZE=(12,22) COLOR=MULTI
* DBCS=NO
* DISPLAY=(24,80,24,80) DLOGMOD=NSX32702 EXTFUN=YES
* FLDOUTLN=NO FLDVALID=NO HIGHLITE=YES
* MAXNOPTN=0 PS=NONE UOM=INCH
*--
* ITPLSGEN: SCRIPT GENERATION PARAMETERS 08:05:35.00 02/16/02
* INPUT WSIM.IDCLOG
* OUTPUT WSIM.MSGFILE
* MSGTXT WSIMDECK
* NODELAY
* GENERATE ALL
* LU IDCSLU-1
* WSIM
* NOVERIFY
*--

CMND COMMAND=INIT,RESOURCE=TSO01,MODE=NSX32702

196 WSim V1R1 Utilities Guide

0 IF LOC=RU+0,TEXT=(’F5’),
THEN=B-CONT0001

WAIT0001 WAIT
BRANCH LABEL=WAIT0001

CONT0001 DEACT IFS=(0)

* 07:58:29.36 ITP1507I SESSION STARTED WITH APPLICATION TSO01

* 07:58:31.83 ITP1508I SESSION ENDED WITH APPLICATION TSO01

* 07:58:31.99 ITP1507I SESSION STARTED WITH APPLICATION TSO0102

CURSOR ROW=1,COLUMN=27
EREOF
CURSOR ROW=2,COLUMN=1
TEXT (user5)
ENTER

ENTER

CLEAR

CURSOR ROW=2,COLUMN=15
EREOF
TEXT (3.4)
ENTER

CURSOR ROW=8,COLUMN=23
EREOF
TEXT (sys1)
ENTER

CURSOR ROW=2,COLUMN=15
EREOF
TEXT (=x)
ENTER

CURSOR ROW=1,COLUMN=9
EREOF
CURSOR ROW=2,COLUMN=1
TEXT (logoff)
ENTER

* 08:00:25.30 ITP1508I SESSION ENDED WITH APPLICATION TSO0102

ENDTXT

Adding panel verification logic to the script
You may choose to have IDC generate statements to test data appearing at a
specific location on all panels. This allows you to verify that the panels
encountered during data capture are the same panels encountered when the script
is actually run.

You can select this option from either the IDC Generate STL Program panel
(Figure 43 on page 191) or the IDC Generate Message Generation Deck panel
(Figure 44 on page 195).

Chapter 15. Generating scripts interactively with IDC 197

You can only specify a single location and data length for all panels. For this
reason, you may want to specify a location that contains predictable information,
such as a panel identifier.

The amount of data verified can cross rows. For example, to verify the second and
third rows on an 80-column screen, specify a starting location of row 2, column 1,
with a length of 160. If you specify a length that exceeds the screen size, the length
value is reduced to match that size.

If the test fails during execution, WSim writes a VERIFY record to the WSim log
and stops execution of the script. When the Loglist Utility processes the WSim log,
it formats the VERIFY record and prints it out with all of the other records in the
log. (For a description of the Loglist Utility and all of the records in the WSim log,
see Part 1, “General utilities,” on page 1.). The VERIFY record indicates the number
of the panel tested, the location and length of the test, and the expected and actual
values of the data.

Below is an example of an STL program with panel verification.
@program=STLDECKT
STLDECK: msgtxt
/*---*/
/* ITPIDC: DISPLAY=WSIM420 APPLICATION=TSO01 07:58:23.89 02/16/02*/
/* ----------- DISPLAY CHARACTERISTICS AND FEATURES ------------ */
/* ALTCSET=APL APLCSID=(963,310) */
/* BASECSID=(697,37) CCSIZE=(12,22) COLOR=MULTI */
/* DBCS=NO */
/* DISPLAY=(24,80,24,80) DLOGMOD=NSX32702 EXTFUN=YES */
/* FLDOUTLN=NO FLDVALID=NO HIGHLITE=YES */
/* MAXNOPTN=0 PS=NONE UOM=INCH */
/*---*/
/* ITPLSGEN: SCRIPT GENERATION PARAMETERS 08:05:35.00 02/16/02*/
/* INPUT WSIM.IDCLOG */
/* OUTPUT WSIM.STLFILE */
/* MSGTXT STLDECK */
/* NODELAY */
/* GENERATE ALL */
/* LU IDCSLU-1 */
/* STL TRACE=STLDECKT */
/* VERIFY ROW=1,COLUMN=2,LENGTH=78 */
/*---*/

panel_error = on /* initialize panel error switch */
do forever /* start do forever loop, */

/* always leave after single pass */

onin0001: onin substr(ru,1,1) = ’F5’x,
then found = on

found = off
initself(’TSO01’,’NSX32702’)
do while found = off /* wait for onin0001 data received */
wait until onin
end
deact onin0001

/* 07:58:29.36 ITP1507I SESSION STARTED WITH APPLICATION TSO01 */

/* 07:58:31.83 ITP1508I SESSION ENDED WITH APPLICATION TSO01 */

/* 07:58:31.99 ITP1507I SESSION STARTED WITH APPLICATION TSO0102 */

screen_data = substr(screen,rowcol(1,2),78)
expected_data = ’IKJ56700A ENTER USERID -’||repeat(’00’x,54)
verify screen_data ¬= expected_data for devid() msgtxtid() ’PNL00001’,

expected_data

198 WSim V1R1 Utilities Guide

if screen_data ¬= expected_data then leave
cursor(1,27)
ereof
cursor(2,1)
type ’user5’
transmit using enter

screen_data = substr(screen,rowcol(1,2),78)
expected_data = ’------------------------------- TSO/E LOGON ---’||,

’------------------------------’
verify screen_data ¬= expected_data for devid() msgtxtid() ’PNL00002’,

expected_data
if screen_data ¬= expected_data then leave
transmit using enter

screen_data = substr(screen,rowcol(1,2),78)
expected_data = ’IKJ56455I USER5 LOGON IN PROGRESS AT 07:58:43 ON’||,

’ FEBRUARY 16, 2002’||repeat(’00’x,12)
verify screen_data ¬= expected_data for devid() msgtxtid() ’PNL00003’,

expected_data
if screen_data ¬= expected_data then leave
transmit using clear

screen_data = substr(screen,rowcol(1,2),78)
expected_data = ’----------------------- ISPF/PDF PRIMARY OPTION’||,

’ MENU -----------------------’
verify screen_data ¬= expected_data for devid() msgtxtid() ’PNL00004’,

expected_data
if screen_data ¬= expected_data then leave
cursor(2,15)
ereof
type ’3.4’
transmit using enter

screen_data = substr(screen,rowcol(1,2),78)
expected_data = ’--------------------------- DATA SET LIST UTILIT’||,

’Y ----------------------------’
verify screen_data ¬= expected_data for devid() msgtxtid() ’PNL00005’,

expected_data
if screen_data ¬= expected_data then leave
cursor(8,23)
ereof
type ’sys1’
transmit using enter

screen_data = substr(screen,rowcol(1,2),78)
expected_data = ’DSLIST - DATA SETS BEGINNING WITH SYS1 ---------’||,

’---------------- ROW 1 OF 363’
verify screen_data ¬= expected_data for devid() msgtxtid() ’PNL00006’,

expected_data
if screen_data ¬= expected_data then leave
cursor(2,15)
ereof
type ’=x’
transmit using enter

screen_data = substr(screen,rowcol(1,2),78)
expected_data = ’READY ’||repeat(’00’x,72)
verify screen_data ¬= expected_data for devid() msgtxtid() ’PNL00007’,

expected_data
if screen_data ¬= expected_data then leave
cursor(1,9)
ereof
cursor(2,1)
type ’logoff’
transmit using enter

Chapter 15. Generating scripts interactively with IDC 199

/* 08:00:25.30 ITP1508I SESSION ENDED WITH APPLICATION TSO0102 */

panel_error = off /* no panel error, reset switch */
leave /* always leave do forever loop */
end /* end do forever loop */

verify panel_error = off for devid() msgtxtid() ’ALL PANELS VERIFIED’
if panel_error = on then
do
say devid() msgtxtid() ’PANEL VERIFICATION ERROR’
suspend() /* panel error, suspend short time */
end
screen_data = ’’ /* release storage for variables */
expected_data = ’’
endtxt

Below is an example of a message generation deck with panel verification.
WSIMDECK MSGTXT
*--
* ITPIDC: DISPLAY=WSIM420 APPLICATION=TSO01 07:58:23.89 02/16/02
* ----------- DISPLAY CHARACTERISTICS AND FEATURES ------------
* ALTCSET=APL APLCSID=(963,310)
* BASECSID=(697,37) CCSIZE=(12,22) COLOR=MULTI
* DBCS=NO
* DISPLAY=(24,80,24,80) DLOGMOD=NSX32702 EXTFUN=YES
* FLDOUTLN=NO FLDVALID=NO HIGHLITE=YES
* MAXNOPTN=0 PS=NONE UOM=INCH
*--
* ITPLSGEN: SCRIPT GENERATION PARAMETERS 08:05:35.00 02/16/02
* INPUT WSIM.IDCLOG
* OUTPUT WSIM.MSGFILE
* MSGTXT WSIMDECK
* NODELAY
* GENERATE ALL
* LU IDCSLU-1
* WSim
* VERIFY ROW=1,COLUMN=2,LENGTH=78
*--

CMND COMMAND=INIT,RESOURCE=TSO01,MODE=NSX32702
0 IF LOC=RU+0,TEXT=(’F5’),

THEN=B-CONT0001
WAIT0001 WAIT

BRANCH LABEL=WAIT0001
CONT0001 DEACT IFS=(0)

* 07:58:29.36 ITP1507I SESSION STARTED WITH APPLICATION TSO01

* 07:58:31.83 ITP1508I SESSION ENDED WITH APPLICATION TSO01

* 07:58:31.99 ITP1507I SESSION STARTED WITH APPLICATION TSO0102

DATASAVE AREA=1,TEXT=($RECALL,(1,2),78$)
DATASAVE AREA=2,TEXT=(IKJ56700A ENTER USERID -$DUP,00,54$)
IF LOC=1+0,LOCLENG=*,COND=NE,WHEN=IMMED,

TEXT=($RECALL,2$),
THEN=VERIFY-($DEVID$ $MSGTXTID$ PNL00001 $RECALL,2$),
ELSE=B-PNL00001

BRANCH LABEL=QUIT
PNL00001 LABEL

CURSOR ROW=1,COLUMN=27
EREOF
CURSOR ROW=2,COLUMN=1
TEXT (user5)
ENTER
STOP

DATASAVE AREA=1,TEXT=($RECALL,(1,2),78$)

200 WSim V1R1 Utilities Guide

DATASAVE AREA=2,TEXT=(------------------------------- TSO/E),
(LOGON ---------------------------------)

IF LOC=1+0,LOCLENG=*,COND=NE,WHEN=IMMED,
TEXT=($RECALL,2$),
THEN=VERIFY-($DEVID$ $MSGTXTID$ PNL00002 $RECALL,2$),
ELSE=B-PNL00002

BRANCH LABEL=QUIT
PNL00002 LABEL

ENTER
STOP

DATASAVE AREA=1,TEXT=($RECALL,(1,2),78$)
DATASAVE AREA=2,TEXT=(IKJ56455I USER5 LOGON IN PROGRESS AT),

(07:58:43 ON FEBRUARY 16, 2002$DUP,00,12$)
IF LOC=1+0,LOCLENG=*,COND=NE,WHEN=IMMED,

TEXT=($RECALL,2$),
THEN=VERIFY-($DEVID$ $MSGTXTID$ PNL00003 $RECALL,2$),
ELSE=B-PNL00003

BRANCH LABEL=QUIT
PNL00003 LABEL

CLEAR
STOP

DATASAVE AREA=1,TEXT=($RECALL,(1,2),78$)
DATASAVE AREA=2,TEXT=(----------------------- ISPF/PDF PRI),

(MARY OPTION MENU -----------------------)
IF LOC=1+0,LOCLENG=*,COND=NE,WHEN=IMMED,

TEXT=($RECALL,2$),
THEN=VERIFY-($DEVID$ $MSGTXTID$ PNL00004 $RECALL,2$),
ELSE=B-PNL00004

BRANCH LABEL=QUIT
PNL00004 LABEL

CURSOR ROW=2,COLUMN=15
EREOF
TEXT (3.4)
ENTER
STOP

DATASAVE AREA=1,TEXT=($RECALL,(1,2),78$)
DATASAVE AREA=2,TEXT=(--------------------------- DATA SET),

(LIST UTILITY ----------------------------)
IF LOC=1+0,LOCLENG=*,COND=NE,WHEN=IMMED,

TEXT=($RECALL,2$),
THEN=VERIFY-($DEVID$ $MSGTXTID$ PNL00005 $RECALL,2$),
ELSE=B-PNL00005

BRANCH LABEL=QUIT
PNL00005 LABEL

CURSOR ROW=8,COLUMN=23
EREOF
TEXT (sys1)
ENTER
STOP

DATASAVE AREA=1,TEXT=($RECALL,(1,2),78$)
DATASAVE AREA=2,TEXT=(DSLIST - DATA SETS BEGINNING WITH SYS),

(1 ------------------------- ROW 1 OF 363)
IF LOC=1+0,LOCLENG=*,COND=NE,WHEN=IMMED,

TEXT=($RECALL,2$),
THEN=VERIFY-($DEVID$ $MSGTXTID$ PNL00006 $RECALL,2$),
ELSE=B-PNL00006

BRANCH LABEL=QUIT
PNL00006 LABEL

CURSOR ROW=2,COLUMN=15
EREOF
TEXT (=x)
ENTER
STOP

Chapter 15. Generating scripts interactively with IDC 201

DATASAVE AREA=1,TEXT=($RECALL,(1,2),78$)
DATASAVE AREA=2,TEXT=(READY $DUP,00,72$)
IF LOC=1+0,LOCLENG=*,COND=NE,WHEN=IMMED,

TEXT=($RECALL,2$),
THEN=VERIFY-($DEVID$ $MSGTXTID$ PNL00007 $RECALL,2$),
ELSE=B-PNL00007

BRANCH LABEL=QUIT
PNL00007 LABEL

CURSOR ROW=1,COLUMN=9
EREOF
CURSOR ROW=2,COLUMN=1
TEXT (logoff)
ENTER
STOP

* 08:00:25.30 ITP1508I SESSION ENDED WITH APPLICATION TSO0102

IF LOC=1+0,LOCLENG=1,TEXT=(’00’),COND=GE,WHEN=IMMED,
THEN=VERIFY-($DEVID$ $MSGTXTID$ ALL PANELS VERIFIED)

BRANCH LABEL=END
QUIT LABEL

WTO ($DEVID$ $MSGTXTID$ PANEL VERIFICATION ERROR)
STOP

END LABEL
DATASAVE AREA=1,TEXT=()
DATASAVE AREA=2,TEXT=()
ENDTXT

Generating user delays
You may also create a script that reproduces the actual user delays that were
recorded during data capture. For example, if you wait 10 seconds before entering
data on a certain panel, when the script is executed, WSim waits 10 seconds before
entering the data, too. If you do not request user delays, WSim enters the data
when the default delay specified in the network definition expires.

You can select this option from either the IDC Generate STL Program panel
(Figure 43 on page 191) or the IDC Generate Message Generation Deck panel
(Figure 44 on page 195).

With this option, IDC generates a DELAY statement for each message sent in the
script. The DELAY statement has a numeric value that tells WSim how long to
wait before sending the next message to the host application.

How the value of the DELAY statement is computed depends on two things: the
UTI (User Time Interval) and the think-time rule. You must specify both of these
when you generate the script.

The UTI is expressed in hundredths of a second and for most scripts a value of 100
(1 second) is recommended. This value, multiplied by the value specified on the
DELAY statement, gives the total amount of time WSim waits before sending the
next message.

The think-time rule determines when WSim begins the countdown to send the next
message. There are two choices: immediate and unlock. Immediate means that
WSim begins counting the delay when it finishes building the previous message.
Unlock means that WSim begins counting the delay when the 3270 keyboard is
unlocked by the host application. For most situations, use unlock for the think time
rule.

202 WSim V1R1 Utilities Guide

You must code the UTI and think-time rule in the network definition you
eventually use when you run the script. Code the UTI value on the UTI operand of
the NTWRK statement and code the think-time rule on the THKTIME operand of
the DEV or LU statements. (Refer to the WSim Script Guide and Reference and
Creating WSim Scripts for more information on coding these operands.) To help you
remember what values you specified when you generate the script, IDC documents
these values in the prologue it writes at the beginning of the STL program or
message generation deck.

Here is an example of an STL program with delays.
@program=STLDECKT
STLDECK: msgtxt
/*---*/
/* ITPIDC: DISPLAY=WSIM420 APPLICATION=TSO01 07:58:23.89 02/16/02*/
/* ----------- DISPLAY CHARACTERISTICS AND FEATURES ------------ */
/* ALTCSET=APL APLCSID=(963,310) */
/* BASECSID=(697,37) CCSIZE=(12,22) COLOR=MULTI */
/* DBCS=NO */
/* DISPLAY=(24,80,24,80) DLOGMOD=NSX32702 EXTFUN=YES */
/* FLDOUTLN=NO FLDVALID=NO HIGHLITE=YES */
/* MAXNOPTN=0 PS=NONE UOM=INCH */
/*---*/
/* ITPLSGEN: SCRIPT GENERATION PARAMETERS 08:05:35.00 02/16/02*/
/* INPUT WSIM.IDCLOG */
/* OUTPUT WSIM.STLFILE */
/* MSGTXT STLDECK */
/* DELAY THKTIME=UNLOCK,UTI=100 */
/* GENERATE ALL */
/* LU IDCSLU-1 */
/* STL TRACE=STLDECKT */
/* NOVERIFY */
/*---*/

suspend() /* initial suspend to sync delays */

onin0001: onin substr(ru,1,1) = ’F5’x,
then found = on

found = off
delay(4)
initself(’TSO01’,’NSX32702’)
do while found = off /* wait for onin0001 data received */
wait until onin
end
deact onin0001

/* 07:58:29.36 ITP1507I SESSION STARTED WITH APPLICATION TSO01 */

/* 07:58:31.83 ITP1508I SESSION ENDED WITH APPLICATION TSO01 */

/* 07:58:31.99 ITP1507I SESSION STARTED WITH APPLICATION TSO0102 */

cursor(1,27)
ereof
cursor(2,1)
type ’user5’
delay(3)
transmit using enter

delay(3)
transmit using enter

Chapter 15. Generating scripts interactively with IDC 203

delay(8)
transmit using clear

cursor(2,15)
ereof
type ’3.4’
delay(6)
transmit using enter

cursor(8,23)
ereof
type ’sys1’
delay(6)
transmit using enter

cursor(2,15)
ereof
type ’=x’
delay(4)
transmit using enter

cursor(1,9)
ereof
cursor(2,1)
type ’logoff’
transmit using enter

/* 08:00:25.30 ITP1508I SESSION ENDED WITH APPLICATION TSO0102 */

endtxt

Here is an example of a message generation deck with delays.
WSIMDECK MSGTXT
*--
* ITPIDC: DISPLAY=WSIM420 APPLICATION=TSO01 07:58:23.89 02/16/02
* ----------- DISPLAY CHARACTERISTICS AND FEATURES ------------
* ALTCSET=APL APLCSID=(963,310)
* BASECSID=(697,37) CCSIZE=(12,22) COLOR=MULTI
* DBCS=NO
* DISPLAY=(24,80,24,80) DLOGMOD=NSX32702 EXTFUN=YES
* FLDOUTLN=NO FLDVALID=NO HIGHLITE=YES
* MAXNOPTN=0 PS=NONE UOM=INCH
*--
* ITPLSGEN: SCRIPT GENERATION PARAMETERS 08:05:35.00 02/16/02
* INPUT WSIM.IDCLOG
* OUTPUT WSIM.MSGFILE
* MSGTXT WSIMDECK
* DELAY THKTIME=UNLOCK,UTI=100
* GENERATE ALL
* LU IDCSLU-1
* WSIM
* NOVERIFY
*--

CMND COMMAND=INIT,RESOURCE=TSO01,MODE=NSX32702
DELAY TIME=4

0 IF LOC=RU+0,TEXT=(’F5’),
THEN=B-CONT0001

WAIT0001 WAIT
BRANCH LABEL=WAIT0001

CONT0001 DEACT IFS=(0)

204 WSim V1R1 Utilities Guide

* 07:58:29.36 ITP1507I SESSION STARTED WITH APPLICATION TSO01

* 07:58:31.83 ITP1508I SESSION ENDED WITH APPLICATION TSO01

* 07:58:31.99 ITP1507I SESSION STARTED WITH APPLICATION TSO0102

CURSOR ROW=1,COLUMN=27
EREOF
CURSOR ROW=2,COLUMN=1
TEXT (user5)
ENTER
DELAY TIME=3

ENTER
DELAY TIME=3

CLEAR
DELAY TIME=8

CURSOR ROW=2,COLUMN=15
EREOF
TEXT (3.4)
ENTER
DELAY TIME=6

CURSOR ROW=8,COLUMN=23
EREOF
TEXT (sys1)
ENTER
DELAY TIME=6

CURSOR ROW=2,COLUMN=15
EREOF
TEXT (=x)
ENTER
DELAY TIME=4

CURSOR ROW=1,COLUMN=9
EREOF
CURSOR ROW=2,COLUMN=1
TEXT (logoff)
ENTER

* 08:00:25.30 ITP1508I SESSION ENDED WITH APPLICATION TSO0102

ENDTXT

Modifying IDC-generated scripts
Once you create a script, you are free to modify it. You may want to do this for
several reasons. Usually, you do this to allow the script to be used by multiple
devices in the simulated network at the same time.

For example, suppose you want several simulated devices to all log on to TSO
simultaneously. Each device needs to use a different TSO user ID. You could create
a different script for each device, with each script referencing a different user ID. A
better solution is to place all of the user IDs in a WSim user table and replace the

Chapter 15. Generating scripts interactively with IDC 205

actual user ID in the script with a reference to an entry in the table. Each time you
execute the script, it selects a different entry from the table.

Other reasons to modify a script might be to provide error recovery actions,
coordinate actions between simulated devices with signals and events, or add
iterative or conditional logic to control the execution of the script.

Using help
You can get help on all IDC panels, fields and selection options. The type of help
you get depends on the panel you are on and where the cursor is when you press
F1.
1. If you are currently on an IDC panel and the cursor is on a data entry field or

selection option, specific help for that field or option is displayed.
2. If you are currently on an IDC panel and the cursor is not on a data entry field

or selection option, general help for the panel is displayed.
3. If you are on a field or selection option help panel, general help for the panel is

displayed.

Debugging problems
If you have a problem with the capture process or the generated script, there are
two sources of information that may help: the IDC log and the IDC trace.

If your script didn't work the way you expected, the IDC log can help you
understand what was sent and received by the display during data capture. The
IDC log shows all of the data flows from the 3270 display's point of view.
Comparing the IDC log to the WSim log will show any differences between the
data capture session and the WSim simulation session.

If you have a problem during data capture, the IDC trace can help. The IDC trace
shows all of the data flows from IDC's point of view. This includes data from both
IDC sessions: the session with the 3270 display and the session with the host
application.

Analyzing the IDC log
The records IDC writes in its log data set are in the same format that WSim uses
for its log data set. (The WSim log data set provides a record of the simulation
run.) Therefore, the Loglist Utility, which is used to analyze the WSim log, can also
be used to analyze the IDC log. Consult Part 1, “General utilities,” on page 1. for
instructions on how to use the Loglist Utility.

IDC writes receive (RECV), transmit (XMIT), and 3270 log display (DSPY) records
to the IDC log while it is capturing data. IDC writes these records using “ITPIDC”
as the network and message generation deck names, “IDCVA” as the VTAMAPPL
name, “IDCSLU-1” as the LU name, and “E2” (LU type 2) as the terminal type.

Receive (RECV) and Transmit (XMIT) Records
IDC creates receive and transmit records directly from the SNA data traffic
flows between itself and the host application program while it's capturing
data. These SNA data traffic flows represent the actual flows a 3270 display
exchanges with the host application program.

3270 Log Display (DSPY) Records
IDC creates 3270 log display records to reflect the screen images being

206 WSim V1R1 Utilities Guide

displayed on the 3270 display being used. IDC creates “BEGINNING OF
MSG GEN” and “END OF MSG GEN” log display records when it receives
data from the 3270 display.

Running IDC with the DEBUG execution parameter (see “Specifying execution
parameters” on page 179) provides a way to correlate generated statements in the
script to captured data in the IDC log.

Analyzing the IDC trace
Errors can occur between the host application and the display. A severe error
causes IDC to terminate its session with the host or the display. To analyze a
failure from IDC's point of view, you must start IDC with the “TRACE” execution
parameter (see “Specifying execution parameters” on page 179) and code a DD or
FILEDEF statement for the IDC trace data set. Next, you need to recreate the
problem. The IDC trace contains records for the session between the 3270 display
and IDC and the session between IDC and the host application. The records in the
IDC trace are in the same format as the IDC log and the WSim log, so you can use
the Loglist Utility to analyze the IDC trace. See Part 1, “General utilities,” on page
1. for instructions on how to use the Loglist Utility.

The IDC trace contains the same record types as the IDC log. IDC writes these
records using “ITPIDC” as the network and message generation deck names,
“IDCVA” as the VTAMAPPL name, “IDCPLU-1” as the IDC PLU name,
“IDCSLU-1” as the IDC SLU name, and “E2” (LU type 2) as the terminal type.

Understanding IDC restrictions
Keep the following items in mind when you run IDC.
v Single 3270 display usage

IDC only supports a single 3270 display session. It rejects the logon request if a
3270 display session already exists.

v Only DASD IDC log data sets are supported
v Altering the query response

Host application programs normally query the 3270 display to determine the
extended functions supported. IDC alters the query response from the 3270
display to only indicate support of the 3270 functions that can be simulated by
WSim and passes the altered query response to the host application program.

v Unsupported 3270 functions
IDC only supports 3270 display functions that can be simulated by WSim. IDC
notifies you whenever a 3270 data stream using unsupported 3270 display
functions is received and sends a negative response to the sender.
Specifically, WSim and IDC support the following 3270 extended functions:
– Color
– Highlighting
– Character sets for base, APL, and up to six Programmed Symbols (PS)
– Double-byte character set (DBCS)
– Field validation
– Alphanumeric partitions
– Field outlining.

Among the 3270 extended functions not supported by WSim and IDC are:
– File transfer

Chapter 15. Generating scripts interactively with IDC 207

– All points addressable (APA) graphics
– Auxiliary devices.

v Non-3270 display usage
IDC only supports 3270 displays. IDC rejects the logon request if the BIND
image in the CINIT request is not a valid 3270 LU type 2 or LU type 0 BIND
image. Also, the type of BIND image (LU type 2 or LU type 0) must be the same
for the 3270 display and application program sessions with IDC.

v Script generating assumptions
IDC-generated scripts assume all data can be entered by the simulated operator
during WSim message generation. Data in application-initialized fields may
cause WSim to log informational messages during message generation. You may
need to modify your script if this happens.

v Generating Network Services and Data Flow Control statements
IDC generates statements to simulate INIT-SELF, TERM-SELF, LUSTAT, and
SIGNAL flows only.

v Panel verification using multiple partitions
When IDC captures data from an application program that defines multiple
alphanumeric partitions and panel verification logic is generated into the script,
only the panel data in one of the defined partitions can be verified.
The panel verification logic row and column values are used to locate the
partition owning the viewport at that location on the 3270 screen. The logic test
is made against the partition presentation space data starting at that location for
the specified length.
Because of this, you should specify a location that contains predictable
information, such as a panel identifier.

v Window location using scrollable partitions
When IDC captures data from an application program that defines scrollable
alphanumeric partitions, IDC cannot maintain the exact partition window
location within the partition presentation space, because this information is not
available to the program. IDC always moves the window to include the cursor,
which may or may not display the same window data as seen on the 3270
display. Because of this, the log display records created by IDC may not reflect
the actual displayed data. However, the generated script does accurately reflect
the data entered when used for the WSim simulation run.

v Limited field validation trigger support
You must modify the scripts generated by IDC for data entry into field
validation trigger fields to move the cursor out of a primed trigger field. You
can normally do this with the tab or new line key; however, this information is
not available to IDC. You should insert the cursor movement statement
following the “Trigger Field Data Generated” comments in the generated script.

v No RESET key support
The ITPIDC or ITPLSGEN generated script assumes the simulated 3270 display
keyboard is unlocked and the SNA state allows the next message to be
generated. If your application requires the RESET key and optionally the ATTN
key to be pressed before sending the next message, you must insert logic into
the generated script to perform a RESET key operation to unlock the keyboard
and optionally generate an SNA SIGNAL request to simulate the ATTN key
operation.

v TSO console support
When you run IDC with the TSOCON execution parameter, the following
restrictions apply:

208 WSim V1R1 Utilities Guide

– If you run IDC in a local LU type 0 environment, be aware of the following:
- The Read Modified All command is not supported. If your application

issues this command, you see the following message: “IKT00405I Screen
erasure caused by error recovery procedure”.

- Your display screen may flash when non-display commands are issued to
your terminal. The amount of flashing depends on the type of display. Gas
panel displays tend to flash the most.

– Pressing the attention key (ATTN or PA1) does not send an SNA SIGNAL
command to your application. If your application requires a key to generate
this command, run IDC without specifying TSOCON.

– If you run IDC in an LU Type 2 environment, IDC may unlock your keyboard
earlier than expected. Some applications handle type-ahead input better than
others. When you are in session with an application that is sensitive to
type-ahead input, use caution to avoid entering data before the application
expects it.

– Terminal communications from other users or the TSO operator destroys the
currently displayed panel. When you finish reading these messages, you must
press Clear twice to redisplay the panel. If your application uses a specific
reshow key, use it instead of Clear.
To minimize this, set your TSO profile to NOINTERCOM before starting IDC
with the TSOCON execution parameter. This option prevents your terminal
from receiving other terminal users' messages. However, you still receive high
priority messages from the TSO operator. The IDC TSO CLIST for running
with the TSOCON execution parameter sets the profile to NOINTERCOM and
resets the original environment when IDC completes. (See “Running IDC
from a CLIST” on page 179 for an example CLIST.) If you want to receive
messages from other users while running IDC, modify this CLIST accordingly.
If you run IDC from the WSim/ISPF Interface, you can specify Y or N in the
Suppress user messages field of the Interactive Capture and Build Message
Decks and STL Programs panel. All message activity is reflected in the
generated scripts.

– IDC SYSPRINT output should not be routed to the TSO console. Doing so
causes undesired effects in the tracing activity and resulting scripts. The IDC
TSO CLIST for running with the TSOCON execution parameter allocates
SYSPRINT to the print queue. If this command is removed from the CLIST,
SYSPRINT may be routed to the TSO console, depending on your TSO system
definition.

Creating network definitions
In addition to generating an STL program or message generation deck, you also
need to create a WSim network definition to run your script. For information on
this task, refer to Creating WSim Scripts and WSim Script Guide and Reference.

Here is a example of a VTAMAPPL network definition for a single 3270 display.
SAMPNET NTWRK HEAD=’VTAMAPPL 3270 NETWORK’,

BUFSIZE=2048,
UTI=100,
THKTIME=UNLOCK

PATH1 PATH STLDECK
WSIMAPPL VTAMAPPL
T3270A LU INIT=SEC,

LUTYPE=LU2,
ALTCSET=NONE,
CCSIZE=(9,16),
COLOR=GREEN,

Chapter 15. Generating scripts interactively with IDC 209

DISPLAY=(24,80,24,80),
DLOGMOD=NSX32702,
EXTFUN=YES,
FLDVALID=NO,
HIGHLITE=NO,
PS=NONE,
UOM=INCH

The network you define must match the script you generated in the following
ways:
1. The PATH statement must reference the STL program or message generation

deck name you specified when you generated the script.
2. INIT=SEC must be coded to indicate that the 3270 display (the SLU) initiates

the session. If the script does not include a generated logon sequence
(INITSELF or CMND COMMAND=INIT), you can code the RESOURCE
operand and let WSim establish the session before executing the script.

3. If you requested user delays when you generated the script, you should code
the same UTI and THKTIME values in the network definition.

4. The display characteristics and features of the simulated 3270 should be
compatible with the actual 3270 display you used when you captured the data,
such as screen size and color support. The prologue in the generated script
shows the operands describing the actual 3270 display.

Controlling the flow of script execution
The WSim message decks or STL programs you specify on the PATH statement are
executed repeatedly until you cancel the network or stop WSim. If you want the
decks or programs to be executed only once, you can add a message deck to the
end of PATH statement that executes a QUIESCE statement.

In STL, the deck would look like this:
qdeck: msgtxt

say ’Device’ luid() ’now quiesced.’
quiesce
endtxt

In the WSim scripting language, the deck would look like this:
QDECK MSGTXT

WTO (Device $LUID$ now quiesced.)
QUIESCE
ENDTXT

There other ways to control flow of execution of decks and programs on the PATH
statement (random selection and selection according to a percentage distribution)
that require special network definition statements. For more information on these
options, refer to Creating WSim Scripts.

Synchronizing multiple scripts
If you plan to have a single simulated 3270 device execute multiple scripts in
sequence, you need to plan the creation of the scripts carefully. Specifically, if script
A is to follow script B, then B must begin at the panel where A ends. One way to
ensure this is to have all your scripts begin and end at the same host application
panel. Another way is to have each script logon and logoff the application
separately.

210 WSim V1R1 Utilities Guide

You also need to add a delay between each script on the PATH statement. This is
because the next deck or program on the PATH statement is executed immediately
after the last. There are several ways to do this.
1. Add a delay statement to the end of each generated script.
2. Create a message deck or STL program similar to the examples in “Controlling

the flow of script execution” on page 210 (but with a DELAY statement instead
of a QUIESCE) and specify it between each deck or program on the PATH
statement.

3. Write a “main” deck or program that calls the other decks or programs. This
“main routine” controls the sequence and timing of the execution of the scripts.

Understanding IDC return codes
At the end of execution, IDC sets a return code to indicate the status of the
execution. IDC execution ends prematurely for all return codes except 0. IDC can
return the following codes:

Code Meaning

0 Execution ended successfully.

4 Execution was attempted under something besides MVS or TSO.

8 A parameter error was detected.

12 An error occurred OPENing the ACB.

16 An error occurred issuing the VTAM SETLOGON request.

20 A GETMAIN storage request failed.

24 VTAM scheduled the TPEND exit routine.

Running WSim
When the script and network definition are complete, you are ready to run WSim.
For information on running WSim, see WSim User's Guide.

Generating Telnet 3270 scripts
The generated VTAMAPPL 3270 scripts can be converted into Telnet 3270 scripts.

The major difference in using the TCP/IP support versus the SNA support is in
establishing the session. Instead of using the CMND= or RESOURCE= operands,
you will need to code a FRSTTXT= message generation deck to establish the
session with the application logon screen. After the session is established, the
scripts should be the same.

You will need the decide if you want to use the WSim Telnet 3270 or 3270E
support. This will depend on what type of server you want to test. If you are not
sure, you should use the 3270E.

Listed below are the steps that may or may not need to be executed.

These are the main VTAMAPPL operands that do not have meaning for Telnet
3270 simulation and should be removed:
v INIT=
v LUTYPE=
v DLOGMOD=

Chapter 15. Generating scripts interactively with IDC 211

v MAXSESS=
v CMND=

Instead of VTAMAPPL and LU, you will need to code something like the
following:
WSIMAPPL TCPIP TNPORT=23 Telnet 3270 default port

TERM01 DEV DISPLAY=(24,80,32,80), Primary and alternate display size
EXTFUN=YES,
LOGDSPLY=BOTH,
SERVADDR=xxx.xxx.xxx.xxx, IP Address
TYPE=TN3270E Telnet 3270E

TERM02 DEV ...

See the WSim User's Guide for more information on the operands.

212 WSim V1R1 Utilities Guide

Chapter 16. Generating scripts from IDC or WSim log data
sets

You can also generate STL programs or WSim message generation decks from an
IDC or WSim log data set with the Log Script Generator Utility (ITPLSGEN).
ITPLSGEN generates a script in the same format as the Interactive Data Capture
(IDC) utility ITPIDC. ITPLSGEN lets you generate or re-generate, using different
script generation parameters, an STL program or WSim message generation deck
outside of the IDC environment. You can run ITPLSGEN under MVS and control it
by using an input file or operator entered commands.

ITPLSGEN also lets you generate an STL program or WSim message generation
deck from a WSim log data set created during a WSim simulation run. ITPLSGEN
generates the script from pairs of the simulated 3270 “BEGINNING OF MSG GEN”
and “END OF MSG GEN” log display records along with the transmit data records
on the WSim log data set. If the WSim log data set contains all of these records,
you can use ITPLSGEN to create a new script, which may be useful in some
environments. For example, you can generate an STL program with a WSim log
data set containing records created from the execution of an old WSim message
deck. You can then use this program as the base for a new STL program to
perform a similar function.

In order to successfully generate a script from a WSim log data set, you must meet
the following conditions when you create the WSim log. These requirements apply
only to the simulated 3270 device from which the script is generated. They do not
apply to any other resources in the network.
v The LU name must be unique within the VTAMAPPL.
v LOGDSPLY=BOTH must be specified.
v MLOG=YES must be specified if you want to generate user delays.

Setting up ITPLSGEN
To run ITPLSGEN under MVS, you need to allocate or use an existing allocation
for the following data sets:

STL programs
This data set contains the generated STL programs. If you plan to generate STL
programs, allocate this as a fixed block, variable block, or variable data set
with a record length of at least 71 bytes and a block size compatible with the
record length. You may allocate this as either a partitioned or sequential data
set. The space needed for this data set depends on the number of user actions
and amount of data generated in the program. Initially, allocate at least 5
cylinders of 3390 DASD or equivalent space for this data set. This data set
must be cataloged.

WSim message generation decks
This data set contains the generated WSim Scripting Language message
generation decks. If you plan to generate message generation decks, allocate
this as a fixed block data set with a record length of 80 bytes and a block size
compatible with the record length. You may allocate this as either a partitioned
or sequential data set. The space needed for this data set depends on the
number of user actions and amount of data generated in the message

© Copyright IBM Corp. 1985, 2015 213

generation decks. Initially, allocate at least 5 cylinders of 3390 DASD or
equivalent for this data set. This data set must be cataloged.

ITPLSGEN commands
This data set contains the ITPLSGEN commands used to control the script
generation process. Allocate this as a fixed block data set with a record length
of 80 bytes and a block size compatible with the record length. The space
needed for this data set depends on the number of ITPLSGEN commands
entered.

Remember, the sizes given above are just estimates to get you safely started. You
should base any long range predictions for space requirements on expected use
and actual experience with ITPLSGEN.

Running ITPLSGEN
Once you set up the data sets, you can then start the ITPLSGEN utility. To do this,
you need to define the ITPLSGEN job stream and specify the ITPLSGEN execution
parameters. You can also run ITPLSGEN by way of the WSim/ISPF Interface. The
following topics discuss how to run ITPLSGEN.

Using JCL to run ITPLSGEN
Below shows the JCL to run ITPLSGEN as an MVS batch job.
//ITPLSGEN JOB
//ITPLSGEN EXEC PGM=ITPLSGEN
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSIN DD DSN=WSIM.ITPLSGEN.COMMANDS,DISP=SHR

Using a CLIST to run ITPLSGEN
The example below shows the CLIST commands to run ITPLSGEN under TSO.
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(SYSUT1) UNIT(SYSALLDA) SPACE(1,1) CYL
ALLOC DDNAME(SYSIN) DATASET(’WSIM.ITPLSGEN.COMMANDS’) SHR
CALL ’WSIM.SITPLOAD(ITPLSGEN)’
FREE DDNAME(SYSPRINT SYSUT1 SYSIN)

Running ITPLSGEN from the WSim/ISPF Interface
To invoke ITPLSGEN from the WSim/ISPF Interface, follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 5 from the WSim/ISPF Interface main panel and press Enter. The
Generate Message Decks and STL Programs panel is displayed.

3. Select option 1 from this panel and press Enter. The Generate Message Decks
and STL Programs from Log Data Set panel is displayed.

Note: You can also type “LSGEN” on the WSim/ISPF Interface main panel
command line and press Enter to display this panel.

4. Fill in the appropriate fields on this panel and press Enter to run ITPLSGEN.

For more information about the WSim/ISPF Interface, refer to Part 1, “General
utilities,” on page 1.

214 WSim V1R1 Utilities Guide

|

Specifying execution parameters
You can specify the following execution parameters for ITPLSGEN:

CONSOLE
Tells ITPLSGEN to issue write-to-operator-with-reply (WTOR) messages to the
operator console for the input control commands. If you do not specify this
parameter, ITPLSGEN reads control commands from the SYSIN data set.

PRTLNCNT=nnn
Specifies the maximum number of lines that can be printed on a page of
SYSPRINT output before ejecting to a new page. nnn can be an integer from 35
to 255. The default value for nnn is 60.

ROUTCDE=(n,n,...)
Specifies the system message routing codes to be used when IDC writes
messages to the operator. Each n is a system routing code that defines a
console destination for every WTO and WTOR message ITPLSGEN writes. n
can be an integer from 1 to 16. The default value for the ROUTCDE parameter
is 8.

Using control commands
You can enter control commands to complete the following tasks:
v Define the program name or message generation deck name
v Specify the input and output data set names
v Generate an STL program or a WSim message generation deck
v Define user delays
v Generate changed data fields
v Define panel verification logic parameters
v Enter commands from the input data stream
v Generate debugging comments
v Start the utility
v End the utility

Note: You must enter the following input commands:
v MSGTXT
v INPUT
v OUTPUT
v RUN
v END.

All other commands are optional.

Entering control commands
You can enter a control command in any position in the input record of the SYSIN
DD data set. These commands cannot extend past column 71 and cannot be
continued. Operands can only be separated with commas. Although you can
separate a command and its operand by more than one blank space, you must
enter at least one blank space between the command and the operand. You cannot
enter blank spaces between operands; operands that follow the space are
interpreted as comments. To enter a comment on a line with operands, insert at
least one space in between the operands and the comment.

Chapter 16. Generating scripts from IDC or WSim log data sets 215

You might also have comment lines. You can do this by entering an asterisk (*) in
the first column.

If you enter a command more than once within the same run, ITPLSGEN uses the
last valid one entered. You can enter multiple RUN commands in the SYSIN DD
data set or from the WSim operator console. Successful generation of a script
following a RUN command clears all the commands entered; a RUN command
that results in an error does not clear the commands.

All parameters, commands, operands, and some operand values 2 can be
abbreviated to any shorter length. All of these, except for NOVERIFY, can be
shortened to one letter. The abbreviated command for NOVERIFY is NOV. The
following examples are identical.
VERIFY ROW=3,COLUMN=5,LENGTH=7
V R=3,C=5,L=7
VER R=3,COLUMN=5,LENG=7

Defining the STL program or message generation deck name
You define the name of the generated STL program or message generation deck
with the MSGTXT command. The syntax of this command is shown below.

MSGTXT msgtxtid

msgtxtid must be 1 to 8 alphanumeric or special ($,@,_,?,#) characters, where the
first character is non-numeric.

For an STL program, the name cannot be an STL reserved word or begin with
$INC, $LA, or $SET (reserved labels in STL). Also, you cannot use the same name
as the STL program trace name.

Specifying input and output
You can specify the input and output data sets by using the INPUT and OUTPUT
commands.

To specify the input data set name, code the INPUT command. This command is
shown below.

INPUT dsname

dsname is the data set name of the IDC or WSim log data set. This name can be
from 1 to 36 characters long and can be enclosed in single or double quotes. If the
data set name you specify has imbedded spaces in it, you must enclose the name
in quotes. When you are using partitioned data sets under MVS, specify the
member name within parentheses after dsname.

To specify the output data set name, code the OUTPUT command. This command
is shown below.

OUTPUT dsname

dsname is the data set name containing the generated script. This name can be from
1 to 36 characters long and can be enclosed in single or double quotes. If the data
set name you specify has imbedded spaces in it, you must enclose the name in

2. IMMED and UNLOCK only.

216 WSim V1R1 Utilities Guide

quotes. When you are using partitioned data sets under MVS, the member name
may optionally be specified within parentheses after dsname. The default member
name for output partitioned data set is the msgtxtid specified on the MSGTXT
command.

Choosing the type of script to generate
You may generate either an STL program or a WSim message generation deck
from the IDC or WSim log data set. You can do this using the STL and WSim
control commands.

To generate an STL program from the log data set, use the STL control command.
This command is shown below.

STL [TRACE=progname]

The optional TRACE operand lets you specify the name you want to appear on the
STL @PROGRAM statement, which is used to define a symbolic name for labeling
STL trace records. progname must be 1 to 8 alphanumeric or special ($,@,_,?,#)
characters, where the first character is non-numeric. The name cannot be an STL
reserved word or begin with $INC, $LA, or $SET (reserved labels in STL). Also,
you cannot use the same name as the MSGTXT.

You only need to use the TRACE operand if you want to trace the execution of
your STL program at run time.

To generate a WSim message generation deck, use the WSim control command.
This command is shown below.

WSIM

If you do not specify either the STL or WSim control commands, ITPLSGEN
generates an STL program.

Specifying devices
You can specify the device in the WSim log data set from which to generate the
script by using the LU command. This command is shown below.

LU name[-nnnnn]

The LU command specifies which LU in the WSim log data set the utility uses to
generate the script. name is a 1 to 8 character name and must be an actual LU or
DEV statement from the network that generated the WSim log data set. nnnnn is a
1 to 5 digit number and must be an actual LU session number from the network
that generated the WSim log data set.

If you do not use this command, ITPLSGEN uses the default name IDCSLU-1,
which is the LU name and session number for an IDC generated log.

Note: The LU name, in combination with the network name and the VTAMAPPL
name, must be unique in records from the WSim log data set. If your WSim log
has a network name of ITPLU2RF, indicating it was produced by the SNA 3270
Reformatter Utility, the LU name must be unique in combination with the network
name.

Chapter 16. Generating scripts from IDC or WSim log data sets 217

Defining user delays
You can reproduce actual delay times recorded during the IDC capture or WSim
run, representing user think time delays, with the DELAY control command. You
can also disable delays with the NODELAY command.

To use actual user delays, enter the DELAY command. This command generates
DELAY statements in the generated script that reproduce actual user delays. (Refer
to Creating WSim Scripts for a discussion of intermessage delays.) This command is
shown below.

DELAY [THKTIME={IMMED|UNLOCK}] [,UTI=nnnn]

The optional THKTIME operand lets you specify what think time rules to use in
calculating the delays. You can enter either IMMED to use immediate think time
rules or UNLOCK to use unlock think time rules. If you do not specify the
THKTIME operand, the generated script calculates user delays using the unlock
think time rules.

The optional UTI operand lets you specify the user time interval value (in
hundredths of a second) that the generated script uses to calculate delays. This
must be a number between 1 (representing .01 seconds) and 6000 (representing 60
seconds). If you do not specify the UTI operand, the generated script uses a user
time interval of 100 (one second). (Refer to WSim Script Guide and Reference for
more information on coding the THKTIME and UTI operands.)

Note: If you want to simulate LU type 2 devices, use THKTIME=UNLOCK here
and in your network definition.

If you do not want to generate user delays, omit the DELAY command or enter the
NODELAY command.

NODELAY

If you do not specify either the DELAY or NODELAY command, ITPLSGEN
generates a script without user delays.

Generating changed data fields
You can select whether to generate scripts with all data fields on your application's
panels or only those that you actually changed. To do this, use the GENERATE
command, shown below.

GENERATE ALL|CHANGED

Use GENERATE ALL if you want IDC to generate scripting statements for all the
unprotected fields on the screen containing data sent to the application program.
This includes unprotected fields set by the application with the MDT bit on that
you did not change during the data capture session.

Use GENERATE CHANGED if you want IDC to generate scripting statements for
only the unprotected fields that you actually changed during the data capture
session. Unprotected fields set by the application with the MDT bit on are ignored
for script generation.

Note: Unprotected fields with the 3270 Modified Data Tag (MDT) bit set on are
sent to the application program when you press Enter or a function key.

218 WSim V1R1 Utilities Guide

If you do not specify the GENERATE command, ITPLSGEN generates statements
for all data fields on the application's screens.

Verifying panels
You can generate scripts with logic to check each panel in the IDC or WSim log
data set for particular data at a given location, such as a panel identifier. To do
this, use the VERIFY command, shown below.

VERIFY ROW=nnn,COLUMN=nnn,LENGTH=nnn

When you enter the VERIFY command, ITPLSGEN generates a script that checks
each panel at the given row and column for the given length against the panels
stored in the log data set at the same row and column for the same length.

The ROW and COLUMN operands specify the starting location of the string to
check on each panel. nnn can be a number from 1 to 255. The LENGTH operand
specifies the length of the data to be verified on the panel at the given location.
nnnnn can be a number from 1 to 32000.

The amount of data verified can cross rows. For example, to verify the second and
third rows on an 80-column screen, specify a starting location of row 2, column 1,
with a length of 160. If you specify a length that exceeds the screen size, the length
value is reduced to match the size.

Note: You must code all three operands on the VERIFY command.

To generate scripts without panel verification, omit the VERIFY command or use
the NOVERIFY command, shown below.

NOVERIFY

If you do not specify either the VERIFY or NOVERIFY command, ITPLSGEN
generates a script without panel verification logic.

Entering commands from the input data stream
You can use the P control command to terminate input from the WSim operator
console and begin reading commands from the SYSIN data set, as follows:

P

If you enter the P command and the SYSIN data set is not open, the utility
continues requesting input from the console. This command is ignored if it is
encountered in the SYSIN data stream.

Generating debugging comments
You can use the DEBUG command to generate debugging comments as follows:

DEBUG

When you enter the DEBUG command, ITPLSGEN inserts comments into the
generated script before each group of generated statements. Each comment
indicates the time of day and sequence number of the record in the IDC or WSim
log data set used to generate the statements following the comment.

Chapter 16. Generating scripts from IDC or WSim log data sets 219

A sample comment for STL programs is shown below.
/*--- 07582389 00001 */

A sample comment for WSim message generation decks is shown below.
*--- 07582389 00001

Use the DEBUG command as a debugging aid for script generation. If you do not
specify the DEBUG command, ITPLSGEN does not generate debugging comments.

Starting ITPLSGEN
When you finish entering your control commands, you then start the ITPLSGEN
utility with the RUN command. This command is shown below.

RUN

The RUN command specifies that all commands are entered and that script
generation is to begin. After script generation, ITPLSGEN resets everything to their
default values.

You can only enter RUN after you specify MSGTXT, INPUT, and OUTPUT for that
run. If you enter RUN before specifying the above commands, ITPLSGEN does not
process any of your commands. This lets you enter the required commands
without losing what you previously entered.

Ending ITPLSGEN
The last control command you enter is the END command. This command is
shown below.

END

The END command tells ITPLSGEN to come to a normal completion. No further
processing occurs. Any commands entered since the last RUN command are
ignored.

Generating the output
ITPLSGEN generates either an STL program or a WSim Scripting Language
message generation deck, depending on whether you entered the STL or WSim
control command. Examples of generated scripts are shown in “Generating scripts”
on page 191.

220 WSim V1R1 Utilities Guide

Chapter 17. Generating 3270 scripts from captured traces

The SNA 3270 Reformatter Utility (ITPLU2RF) is a WSim utility that reformats
session collection data logged by NPM or VTAM. This session collection data is
known to NPM as the VTAM PIU log (FNMVLOG). The SNA 3270 Reformatter
Utility processes this NPM log to create an equivalent WSim log data set for LU
type 2 sessions or LU type 0 sessions using a 3270 data stream (that is, sessions
between applications and 3270 terminals). It also produces reports showing
statistics on record counts, data lengths, and time stamps.

Note: You must use NPM Version 1 Release 4 or later, or VTAM Version 4 Release
1 or later, Full Buffer Trace, to capture logs to be reformatted by the SNA 3270
Reformatter Utility.

You can use NPM to trace one or more users, or even an entire application,
without any of the users knowing they are being traced. This is similar to IDC,
where a single user can be traced to create an IDC log. However, this user must
first log on to IDC and so cannot be unknowingly traced.

You can use the SNA 3270 Reformatter Utility along with the WSIM Log Script
Generator Utility (ITPLSGEN) to create STL programs and WSim message decks.
This contrasts with the Script Generator Utility (ITPSGEN), which only creates
WSim message decks without the additional 3270 support unique to ITPLSGEN.
You still may prefer to use ITPSGEN, as it can process other LU types as well as
LU type 2.

The WSim log data set created by the SNA 3270 Reformatter Utility can be used by
other WSim utilities such as Loglist, Response Time, and Log Compare. For
example, you could process a reformatted log through the Log Script Generator to
create a WSim script. This WSim script could then be used when you run your
simulation to create a WSim log data set. You use the Log Compare Utility to
compare the WSim log with the actual production run logged by NPM or VTAM
and reformatted by the SNA 3270 Reformatter Utility. Your comparison report
compares the actual production run with the first test run of the WSim script. You
can document the results of your script execution by running the Loglist Utility.
This prints the screen images from the WSim log data set created by the SNA 3270
Reformatter Utility. Similarly, you can use the Response Time Utility to measure
the actual production response times by processing the reformatted NPM log.

Planning to use the SNA 3270 Reformatter Utility
Before collecting data, you must plan what you want to trace. In particular, you
need to determine what terminals and applications you need for reformatting and
whether you need to record the logmode for each session. The logmode is included
in STL programs or WSim message decks when a WSim log data set is processed
by the Log Script Generator (ITPLSGEN). This lets you specify the same logmode
as traced by for this session when you actually run your simulation. If this
logmode is important to you, you must trace the application, otherwise you may
trace specific terminals. Tracing specific terminals ensures you only collect data for
sessions you want to reformat.

For the SNA 3270 Reformatter Utility to reformat sessions properly, you need a
BIND record in the log data set for each session to be reformatted. Any sessions

© Copyright IBM Corp. 1985, 2015 221

that exist when you start the trace will not have BIND records in the log data set
and are not reformatted. To make sure that BIND records are present for the
desired sessions, start the trace before you establish any sessions.

NPM Version 1 Release 4 or later must be properly installed on your system before
you can trace any sessions to be reformatted by the SNA 3270 Reformatter Utility
if you use NPM traces as input. Refer to NPM Installation and Customization for
more information on installing NPM.

Refer to NPM Operation for instructions on capturing traces using NPM.

Allocating SNA 3270 Reformatter Utility data sets
Before you run the SNA 3270 Reformatter Utility, allocate three data sets: the log
for input (as described above), the WSim log data set, and SYSPRINT for output.

The space needed for the WSim log data set depends on the size of the input log.
Initially, allocate at least 150 blocks (5 cylinders of 3380 DASD or equivalent) for
this data set. For 3380 DASD, allocate this data set as a variable block, sequential
or partitioned data set with a record length of 23472 bytes and a block size of
23476 bytes. For 3390 DASD, allocate this data set as a variable block, sequential or
partitioned data set with a record length of 27994 bytes and a block size of 27998
bytes. For other DASD types, the block size should be the largest value (less than
or equal to 32760) that best uses the space available on each track. The record
length must be 4 bytes less than the block size value.

The SNA 3270 Reformatter Utility uses SYSPRINT to write reports. Normally this
is defined to SYSOUT, although you can use a data set instead. If you use a data
set, it must have an FBA (fixed block) record format, a record length of 133 and a
blocksize that is a multiple of 133.

Running the SNA 3270 Reformatter Utility
The SNA 3270 Reformatter Utility can be run as a batch job or from a CLIST on
MVS, or from the WSim/ISPF Interface. You need a region size of at least 275K to
run the utility. These storage requirements increase as the number of sessions
processed increases.

Note: The NPMLOG data set can be either an FNMVLOG data set from NPM or a
GTF trace data set containing a VTAM full buffer trace.

Running the SNA 3270 Reformatter Utility as a batch job
The following is an example job to run the SNA 3270 Reformatter Utility.
//LU2RF JOB //ITPLU2RF EXEC PGM=ITPLU2RF
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//NPMLOG DD DSN=NPM.FNMVLOG.COPY,DISP=SHR
//WSIMLOG DD DSN=WSIM.ITPLU2RF.WSIMLOG,DISP=OLD

Running the SNA 3270 Reformatter Utility from an MVS CLIST
The following is an example CLIST that invokes the SNA 3270 Reformatter Utility.
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(NPMLOG) DA(’NPM.FNMVLOG.COPY’) SHR REUS
ALLOC DDNAME(WSIMLOG) DA(’WSIM.ITPLU2RF.WSIMLOG’) OLD REUS
CALL ’WSIM.SITPLOAD(ITPLU2RF)’
FREE DDNAME(SYSPRINT NPMLOG WSIMLOG)

222 WSim V1R1 Utilities Guide

Running the SNA 3270 Reformatter Utility from the WSim/ISPF
Interface

To invoke the SNA 3270 Reformatter Utility from the WSim/ISPF Interface, follow
these steps:
1. Invoke the WSim/ISPF Interface Main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 5 from the WSim/ISPF Interface Main panel and press Enter. The
Generate Message Decks, STL Programs, and WSim Logs panel is displayed.

3. Select option 3 from this panel and press Enter. The Generate WSim Logs from
Captured Trace Data panel is displayed.

Note: You can also type “LU2RF” on the WSim/ISPF Interface Main panel
command line and press Enter to display this panel.

4. Fill in the appropriate fields on this panel and press Enter.

For more information on the WSim/ISPF Interface, refer to Part 1, “General
utilities,” on page 1.

Specifying execution parameters
There is one execution parameter for the SNA 3270 Reformatter Utility: the print
line count. This is the number of lines per report page. The syntax is
PRTLNCNT=xxx, where xxx is an integer between 35 and 255. If PRTLNCNT is
not specified, the default is 60 lines per page.

Understanding SNA 3270 Reformatter Utility output
The SNA 3270 Reformatter Utility writes reports to SYSPRINT: Summary report,
Eligible Terminal report and Ineligible Terminal report. There is also a return code,
which is described in WSim Messages and Codes.

Understanding the Summary Report
This report summarizes the SNA 3270 Reformatter Utility run, showing counts and
time stamps for the log processed. An example of this report is shown below:

SUMMARY REPORT

ITPLU2RF RETURN CODE: 0

LINES PER PAGE : 60

LOG RECORDS READ : 152
LOG RECORDS SELECTED: 126
LOG RECORDS IGNORED : 26

REFORMAT WARNINGS : 0

FIRST LOG RECORD : 7.40.00 FEBRUARY 13, 2002
LAST LOG RECORD : 7.42.48 FEBRUARY 13, 2002

ELIGIBLE SESSIONS : 6
INELIGIBLE SESSIONS : 0

Chapter 17. Generating 3270 scripts from captured traces 223

|

|

ITPLU2RF RETURN CODE
The return code from the SNA 3270 Reformatter Utility. See WSim Messages
and Codes for a description of each return code.

LINES PER PAGE
The number of lines per report page on SYSPRINT. The default value is 60,
unless altered by the PRTLNCNT execution parameter.

LOG RECORDS READ
The number of records read from the log.

LOG RECORDS SELECTED
The number of records selected for processing.

LOG RECORDS IGNORED
The number of records not selected for processing. Ignored records include:
v Control records
v Records for sessions between applications and VTAM.

REFORMAT WARNINGS
The number of reformat warning messages written to the WSim log data
set.

FIRST LOG RECORD
The time of the first valid record on the log.

LAST LOG RECORD
The time of the last valid record on the log.

ELIGIBLE SESSIONS
The number of eligible sessions reformatted by the SNA 3270 Reformatter
Utility. The details of these sessions are shown in the Eligible Terminal
Report.

INELIGIBLE SESSIONS
The number of sessions not reformatted by the SNA 3270 Reformatter
Utility. The details of these sessions and the reasons why they were
rejected are shown in the Ineligible Terminal Report.

Understanding the Eligible Terminal Report
The Eligible Terminal Report has one record for each of the eligible sessions
processed by the SNA 3270 Reformatter Utility. An example record is shown below.
This record identifies the session and shows time stamps when various events
occurred. There are also statistics on the amount of data transmitted and received
between the terminal and application. These statistics are only for user data,
namely, the FM data request RUs. The TH, RH, and RU types other than FM data
are not included in these counts.

ELIGIBLE TERMINAL REPORT

THE FOLLOWING SESSIONS HAVE BEEN REFORMATTED:

TERMINAL : TERM1 APPLICATION : PCICS01 LOGMODE : L3278M2
FIRST RECORD : 7.40.00 FEBRUARY 13, 2002
INIT-SELF TIME : ITPLU2RF DEFAULT USED
BIND TIME : 7.40.02 FEBRUARY 13, 2002
SDT TIME : 7.40.02 FEBRUARY 13, 2002
UNBIND TIME : NONE FOUND
LAST RECORD : 7.42.45 FEBRUARY 13, 2002
XMIT RECORD COUNT : 14 RECV RECORD COUNT : 16

MINIMUM LENGTH : 1 MINIMUM LENGTH : 2
MAXIMUM LENGTH : 24 MAXIMUM LENGTH : 797
AVERAGE LENGTH : 7 AVERAGE LENGTH : 258
TOTAL LENGTH : 93 TOTAL LENGTH : 4,135

TOTAL XMIT + RECV : 4,228 AVERAGE XMIT + RECV : 141

224 WSim V1R1 Utilities Guide

TERMINAL
The 3270 display terminal name (the secondary LU2).

APPLICATION
The application name (the primary LU). If the application sends an
“UNBIND with BIND forthcoming”, this field shows the original
application name followed by the application name from the last BIND for
this session.

LOGMODE
The logmode used for this session.

FIRST RECORD
The time stamp of the first record for this session on the log, usually the
time of the CINIT.

INIT-SELF TIME
If an INIT-SELF is on the log, then INIT-SELF TIME contains its time
stamp. If not, the SNA 3270 Reformatter Utility creates a default INIT-SELF
using information derived from the CINIT for this session, and the
message “ITPLU2RF DEFAULT USED” appears instead of the time stamp.

BIND TIME
The time stamp of the BIND record.

SDT TIME
Time stamp of the SDT record.

UNBIND TIME
The time stamp of the UNBIND record, or “AFTER TRACE ENDED”
message if the UNBIND is not present on the log.

LAST RECORD
The time stamp of the last record processed for this session.

RECORD COUNT
The number of FM data request RUs found for this session. (Transmit and
receive values shown separately.)

MINIMUM LENGTH
The size in bytes of the smallest FM data request RU for this session.
(Transmit and receive values shown separately.)

MAXIMUM LENGTH
The size in bytes of the largest FM data request RU for this session.
(Transmit and receive values shown separately.)

AVERAGE LENGTH
The average size in bytes of all FM data request RUs for this session.
(Transmit and receive values shown separately.)

TOTAL LENGTH
The sum of all FM data request RU lengths for this session. (Transmit and
receive values shown separately.)

TOTAL XMIT+RECV
The sum of all FM data request RU lengths for both transmit and receive
RUs.

AVERAGE XMIT+RECV
The average size of all FM data request RUs transmitted and received by
this session.

Chapter 17. Generating 3270 scripts from captured traces 225

A note appears at the end of the statistics for a particular session if one of the
following conditions exist:
v The session is LU type 0 and the BIND specifies that the FM profile is type 2

and the TS profile is type 2. The note indicates that a 3270 data stream is
assumed.

v Extraneous records are found before the BIND. The note indicates that
extraneous records are ignored.

If no eligible sessions were found, then the following message appears instead of
the report shown above.
NO ELIGIBLE SESSIONS FOUND.

Understanding the Ineligible Terminal Report
If all sessions were successfully processed, then the following message appears.
NO INELIGIBLE SESSIONS FOUND.

However, if there are any ineligible sessions, the Ineligible Terminal report uses the
same format as the Eligible Terminal Report with the addition of a reject reason
line. This reject reason can have one of three values:
1. NO BIND RECORD FOUND FOR THIS SESSION.

If a BIND record is not on the NPM log, then no WSim display (DSPY) records
for this session can be created. Without these DSPY records, the WSim Log
Script Generator (ITPLSGEN) cannot create scripts for this session.

2. THIS SESSION IS NOT LU TYPE 2 OR 3270 LU TYPE 0.
The SNA 3270 Reformatter Utility only processes records between terminals
and applications. If the BIND specifies that the session is not LU type 2 or 3270
LU type 0, the session is not reformatted.

3. ITPLU2RF WARNING MESSAGES WRITTEN TO LOG.
You can find the text of any warning messages by running the loglist utility for
this session. This is described in “Using the WSim log data set.” The SNA 3270
Reformatter Utility continues processing this session; however there will be
missing WSim display (DSPY) records in the WSim log data set. You may not
be able to use other WSim utilities such as the Log Script Generator
(ITPLSGEN).

Using the WSim log data set
The WSim log data set created by the SNA 3270 Reformatter Utility consists of four
types of records:

Data records
Standard WSim log data set records (XMIT and RECV) containing the PIU
data selected from the log.

Display records
Standard WSim display (DSPY) records containing screen images derived
from the PIU data on the log.

Warning records
Log (LOG) records containing messages about reformatting errors. These
messages are documented in WSim Messages and Codes.

Comments for ITPLSGEN
Log (LOG) records containing device characteristics information for this

226 WSim V1R1 Utilities Guide

terminal. These records are used by the Log Script Generator (ITPLSGEN)
to add IDC-like prologue comments in STL programs and WSim message
decks.

Formatting the WSim log data set
Each record type can be printed by the Loglist Utility (ITPLL). For example, the
following loglist commands print all data, display, warnings, and comments for
ITPLSGEN for terminal TERM1:
TERM TERM1
DATA
DSPLY ATTR
LOG
RUN
END

Search for “ITP180” to find SNA 3270 Reformatter Utility warning records. This
locates all ITP180n messages, which are detailed in WSim Messages and Codes.

Generating a WSim script
The SNA 3270 Reformatter Utility is specifically designed to create WSim log data
sets for the Log Script Generator (ITPLSGEN). See Chapter 16, “Generating scripts
from IDC or WSim log data sets,” on page 213 for details on how to use
ITPLSGEN.

The SNA 3270 Reformatter Utility creates device characteristics comment records in
the STL programs or message decks. These comments describe the device
characteristics for this terminal. The defaults used by the SNA 3270 Reformatter
Utility are shown below.
ALTCSET=APL APLCSID=(963,310)
BASECSID=(697,37) CCSIZE=(9,16) COLOR=MULTI
DBCS=NO
DISPLAY=(24,80,32,80) DLOGMOD=xxxxxxx EXTFUN=YES
FLDOUTLN=NO FLDVALID=NO HIGHLITE=YES
MAXNOPTN=0 PS=(S,S,T,T,S,T) UOM=INCH

Note that the DISPLAY values may be altered by the BIND.

The SNA 3270 Reformatter Utility also creates comment records whenever a 3270
query reply log record is processed that indicates a new value for any of the device
characteristics. If all of the values in the query reply are the same as the default
values, no comment records are created when the query reply is processed. The
values held on the 3270 query reply are combined with the following defaults to
create a new set of device characteristics:
ALTCSET=NONE
BASECSID=(697,37) CCSIZE=(9,16) COLOR=GREEN
DBCS=NO
DISPLAY=(24,80,24,80) DLOGMOD=xxxxxx EXTFUN=NO
FLDOUTLN=NO FLDVALID=NO HIGHLITE=NO
MAXNOPTN=0 PS=NONE UOM=INCH

Calculating response times
The response times logged during session data collection can be printed running
the response time utility for the WSim log data set created by the SNA 3270
Reformatter Utility. The response time utility is described in Part 1, “General
utilities,” on page 1.

Chapter 17. Generating 3270 scripts from captured traces 227

Comparing WSim log data sets
The Log Compare Utility (ITPCOMP) can process WSim log data sets created by
the SNA 3270 Reformatter Utility. Use the reformatted WSim log data set as the
MASTER compare log. The TEST log should be the WSim log data set created
when you ran the scripts generated by ITPLSGEN from the reformatted log. Refer
to Part 1, “General utilities,” on page 1.

Understanding SNA 3270 Reformatter Utility restrictions
You need NPM Version 1 Release 4 or later to capture logs for reformatting by the
SNA 3270 Reformatter Utility. VTAM PIU logs captured by earlier releases of NPM
may not reformat correctly. If the SNA 3270 Reformatter Utility fails to process an
NPM log, then a non-zero return code is shown in the Summary Report (as
described in “Understanding the Summary Report” on page 223). This return code
is described in WSim Messages and Codes and explains why the problem has
occurred. If you are still not clear about the cause of the error, here are some ideas
that may help:
1. The SNA 3270 Reformatter Utility has many of the same restrictions as IDC.

The SNA 3270 Reformatter Utility supports the following 3270 functions:
v Color
v Highlighting
v Character sets for base and APL
v Field validation
v Alphanumeric partitions
v Magnetic Stripe Reader
v Selector Light Pen
v PIU segmentation
v PIU chaining
v AID validation
v Local Clears
v Erase-EOF
v ERIN.

2. Both IDC and the SNA 3270 Reformatter Utility do not support the following
functions:
v File transfer
v All Points Addressable (APA) graphics
v Auxiliary devices.

3. The SNA 3270 Reformatter Utility can only process LU type 2 and 3270 LU
type 0 sessions with BINDs. If a session is not one of these LU types, no
records are reformatted for this session. If the session is one of these LU types
but does not have a BIND, then the session is not reformatted. The SNA 3270
Reformatter Utility flushes any data for a session of unknown LU type. If a
BIND is later found that defines the session to be either LU type 2 or 3270 LU
type 0, the remainder of the session records are processed.

4. If the SNA 3270 Reformatter Utility does not recognize your log as having the
correct format, check that the options used for data collection were specified
correctly.

5. If you are tracing an application, this does not mean you can create an STL
program or WSim message deck to simulate the application. The Log Script

228 WSim V1R1 Utilities Guide

Generator will only create scripts for the secondary LU (a 3270 terminal) and
not for the primary LU (the application).

6. If the Log Script Generator (ITPLSGEN) fails to create a script from the WSim
log data set produced by the SNA 3270 Reformatter Utility, make sure the SNA
3270 Reformatter Utility completed with a return code of 0 or 4. If the return
code is 8, check for warning messages reported for this session. See
“Understanding the Ineligible Terminal Report” on page 226 for details.

7. The NPM FNMVLOG or VTAM full buffer trace data set contains PIU data and
not screen images. The SNA 3270 Reformatter Utility derives the screen images
from the PIU data only. This means that local 3270 functions such as Erase-EOF
and Erase Input (which do not appear in the PIU) will be evaluated from the
state of all fields in the VTAM PIU data. The display (DSPY) records in the
WSim log data set may not always reflect exactly the screen images seen at
session data collection time.
The following are examples of when this might happen:
v When nulls are imbedded between significant data within a field on the

screen image. The nulls are suppressed in the PIU and in the resulting
display records in the WSim log data set.

v When a short AID (such as PA1) is entered. There may be data on the screen
image that does not appear in the resulting display records, since it is not
included in the PIU.

v When a local clear is done at the terminal. Typically, it is impossible to
determine from the PIU data that a local clear occurred. So the resulting
display records may reflect the screen image before the clear request.

v When a trigger attribute is present on the screen and a trigger action occurs.
The final cursor position may be incorrect, since the trigger action cursor
movement is not reflected in the data stream.

SNA 3270 Reformatter Utility return codes
SNA 3270 Reformatter Utility issues the following return codes:

Code Meaning

0 SNA 3270 Reformatter Utility has completed without any errors, warning
messages or invalid sessions.

4 SNA 3270 Reformatter Utility has completed without any errors but has
detected at least one invalid session on the input log, probably because of a
missing BIND record for that session. Details of invalid sessions can be found
in the ineligible terminal report.

8 SNA 3270 Reformatter Utility has completed with a least one warning message
written to the WSim log. Any sessions with warning messages can be found in
the ineligible terminal report.

12 An unrecoverable I/O error occurred when trying to read from the NPMLOG
DD. Make sure the NPMLOG DD is allocated to the correct data set.

16 The log has an unrecognized data format and is probably not a log at all. Make
sure the NPMLOG DD is allocated to the correct data set.

20 Unable to open the log. Check the allocation of the NPMLOG DD.

24 Lost data on the log. The NPM log has a record with an event identifier of
X'E107', indicating that data has been lost on the log. The log is invalid and
must be recreated.

28 Unable to open the SYSPRINT DD. Check the allocation of the SYSPRINT DD.

32 Unable to open the WSIMLOG DD. Check the allocation of the WSIMLOG DD.

Chapter 17. Generating 3270 scripts from captured traces 229

36 Insufficient storage to run ITPLU2RF. Allocate more storage to ITPLU2RF before
rerunning the job.

40 PRTLNCNT parameter incorrect. Make sure the execution parameter has the
correct format.

44 An unrecoverable I/O error occurred when trying to write to the WSIMLOG
DD. Make sure the WSIMLOG DD is allocated correctly and has sufficient
space in the dataset and volume.

48 The log is empty. Make sure the NPMLOG DD is correctly allocated.

230 WSim V1R1 Utilities Guide

Chapter 18. Using the Script Generator Utility

The Script Generator Utility (ITPSGEN) enables you to generate WSim message
generation decks for the terminals in the network definition. Decks are generated
using network definitions and captured data traffic from live runs of the system
under test. You can specify either existing or new network definitions as input.

You must put the data captured for the Script Generator Utility in a specified
format and sort it by resource name, date, and time. A program provided as part
of the Script Generator Utility (ITPVTBRF) accepts other formats of captured data
and reformats the data for input to ITPSGEN, the utility program that actually
generates the message generation decks.

You must follow five steps to generate message generation decks using this script
generator:
1. Obtain a trace of system activity.
2. Reformat the trace output if it is not in the format required for the script

generator utility.
3. Sort the reformatted output using any standard sort program.
4. Define the network.
5. Generate the message generation decks.

Figure 45 on page 232 lists the programs you use for each step. The following
sections discuss the programs provided, give instructions for their use, and provide
general information regarding the script generation process.

© Copyright IBM Corp. 1985, 2015 231

Operational suggestions
ITPSGEN builds message generation decks to re-create the captured terminal data
traffic. The quality of the resulting scripts cannot be better than the actual data
traffic captured. The following paragraphs describe two methods that you can use
to capture terminal data traffic, some of the problems you may encounter, and
possible solutions to the problems.

Capture single terminal traffic
You can use the following method in situations where the WSim scripts must
generate a particular set of host application transactions. This method has the
advantage of being easily controlled.
1. Identify a single terminal and operator to initiate a conversation with the host

application, execute a predefined set of transactions, and end the conversation
with the host application.

2. Start the capture routine.

1. Obtain a trace of system activity.
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ │ │ VTAM │ │ Your own │
│ NPM │ │ Buffer │ │ capture │
│ │ │ Trace │ │ routine │
└──────┬───────┘ └──────┬───────┘ └──────┬───────┘

│ │ │
│ │ │
└─────────┬──────────┘ │

│ │
2. Reformat │ │

↓ │
┌─────────────┐ │
│ ITPVTBRF │ │
│ │ │
└──────┬──────┘ │

│←─────────────────────────────┘
3. Sort │

↓
┌─────────────┐
│ │
│ SORT │
│ │
└────┬────────┘

│
4. Define │

Network │
│ ┌─────────────┐
│ │ NTWRK │
│ ┌───────────────┤ Statements │
│ │ │ │
│ │ └─────────────┘

5. Generate │ │
Message │ │
Decks │ │

↓ ↓
┌──────────────┐
│ │
│ ITPSGEN │
│ │
└──────────────┘

Figure 45. Generating scripts with the Script Generator Utility

232 WSim V1R1 Utilities Guide

3. Have the operator execute the conversation with the host application using the
identified terminal.

4. Stop the capture routine.
5. Reformat and sort the captured terminal data traffic.
6. Create the network definition for your simulation.
7. Run ITPSGEN to produce a message generation deck.
8. Modify the network definition to force each terminal to execute the generated

message generation deck using the PATH operand.

Note: You may also want to modify the generated deck to include references to
user tables (UTBL), counters, or random numbers. If you do not do this, all the
simulated terminals will send the same message traffic as the terminal that was
traced. This can cause problems because all simulated terminals will try to
access the same data base records.

9. Start WSim. Initialize and start the network created by the previous step. The
WSim network, through the generated message generation deck, will duplicate
the captured host application conversation for each simulated terminal defined
in the network.

Capture system terminal traffic
The following method will capture all the terminal data traffic within the system.
This method can be used to recreate the terminal-to-host application conversations
that are unique to each terminal. The advantage of this method is that the captured
data represents the actual terminal data traffic occurring during the capture time
frame. The disadvantages of this method are that the state of each terminal is not
under your complete control and the transactions entered by the terminal operators
may not be the type required for the host application test.
1. Start the capture routine.
2. Start the host application. This should be performed during a time when a

heavy load can be expected.
3. Allow the terminal data traffic to be captured for a period of time.
4. Stop the capture routine.
5. Reformat and sort the captured data.
6. Create the network definition for your simulation.
7. Run ITPSGEN to produce the message generation decks for each terminal.
8. Start WSim. Initialize and start the network created by the previous step. The

WSim network will duplicate the terminal to host application conversations
previously captured.

Step 1. Obtaining a trace of system activity
Before you can use the Script Generator Utility to produce message generation
decks, you must obtain a trace of system activity. Several possible methods of
obtaining a trace are discussed here, but there are other methods as well. Any
method that produces data in the required format is acceptable.

NPM VTAM Log
The NetView* Performance Monitor (NPM) provides a facility for capturing the
path information units (PIUs) for selected logical units. The data is collected in a
VTAM log data set. If you use this facility, be sure to specify VLOG=1 and

Chapter 18. Using the Script Generator Utility 233

MIN=NO on the NPM Start Session Collection Menu. For more information about
using the NPM data collection facility, refer to the NetView Performance Monitor
User's Guide and Reference.

Reformatting
You can use the WSim reformatter, ITPVTBRF, to reformat the VTAM log data set.
See “ITPVTBRF” on page 235 for more information.

VTAM buffer trace
You can use the VTAM buffer trace together with the Generalized Trace Facility
(GTF) to obtain a trace of system activity.

You should start GTF with the USR option (TRACE=USR).

Limitations
Data is truncated if it is longer than one GTF trace record. This limitation may not
be a problem, however, if the terminals communicating with VTAM applications
do not send long messages. Also, data sent to the terminals is usually only used to
determine delays and values for RESP data, so it normally does not matter if it is
truncated.

The normal VTAM buffer trace and the GTF facility can record a maximum
(excluding SNA headers) of 195 bytes. With VTAM Version 4 Release 1 and later,
you can use the full buffer trace option. When you use this option, VTAM records
the entire PIU and ITPVTBRF can process up to 8000 bytes per PIU.

Reformatting
You can use the WSim reformat program, ITPVTBRF, to convert the GTF data set
to the format needed by ITPSGEN. This program is described in “ITPVTBRF” on
page 235. You can find additional information and instructions for using the GTF
facility in conjunction with VTAM buffer trace in ACF/VTAM Operation and in the
appropriate service aids manual for the system you are using.

The VTAM buffer trace is for MVS only.

Your own capture routine
You can also write your own capture routine to obtain input to ITPSGEN. You
should block the input data set for ITPSGEN with variable length records
(RECFM=VB) and a BLKSIZE of up to 32760 bytes. You must sort the tape or data
set by terminal name, date, and time before using it as input to ITPSGEN. The
format of each record is described below.

Offset Length
Decimal Hex (in bytes) Description

0 (0) 2 Logical record length (in binary)
2 (2) 2 Reserved - always zero
4 (4) 4 Time of day in binary hundredths of

seconds
8 (8) 4 Julian date in packed decimal form,

yyyydddC, where yyyy
is the year and ddd is the day

12 (C) 8 Resource name
20 (14) 2 Reserved
22 (16) 2 Session number
24 (18) 1 Transmission Header (TH) byte containing

Segmenting and Expedited Flow Indicators
25 (19) 3 Request/Response Header (RH)
28 (1C) 1 Flags

1... Transmit record from resource

234 WSim V1R1 Utilities Guide

.1.. Record to/from SSCP

..1. End of block

...1 Subblock

.... 1... Primary LU
29 (1D) 1 Format identifier (FID)
30 (1E) 2 Data length
32 (20) variable Data - maximum 6000 bytes

Where to take the trace
There are two different situations for which you may want to take traces. The first
situation is where you want to generate scripts for simulating terminals. Here you
have the standard terminal-to-application sessions. The other situation is where
you want to generate scripts for simulating applications. This is normally in a
LU6.2 environment, where you have applications in session with other
applications.

When you generate scripts for terminals, you can trace either the terminal or the
application. The trace records look the same whichever is traced. Tracing the
resources to be simulated in that case may cut down the size of the trace if other
terminals also have sessions with that application, but otherwise there is no
difference.

When both applications are associated with the same VTAM, you must trace the
application to be tested rather than the application to be simulated. When both
applications are associated with different VTAMs, you must take the trace in the
VTAM associated with the application to be tested and not that of the application
to be simulated.

Step 2. Reformatting the trace output
If the trace of system activity obtained is not in the format that the Script
Generator Utility requires, the data must be reformatted before you can use it for
generating message generation decks. WSim provides a program (ITPVTBRF) to
help you reformat your data.

ITPVTBRF
ITPVTBRF reformats VTAM buffer trace records recorded using the GTF or the
NPM data collection facility. ITPVTBRF produces reformatted records for the
originating node name (for data input to VTAM) and for the destination node
name (for data output from VTAM). If the opposite node name is VTAM, the
to/from SSCP flag is turned on in the reformatted record. ITPVTBRF uses one of
two inputs, the GTF trace data set or the VTAM log data set created by NPM, and
produces one output, a reformatted trace data set.

Note: ITPVTBRF does not reformat the VTAM buffer trace records produced on
VM, but NPM records produced on VM can be used. Also, ITPVTBRF only
recognizes PIUs using extended addresses.

If ITPVTBRF detects LU type 6.2 BINDs in the VTAM buffer trace data, it assigns a
session number to each reformatted trace record, matching addresses in the traced
data to addresses in the individual BINDs. This enables the Script Generator Utility
to generate separate MSGTXT decks for each LU type 6.2 session.

ITPVTBRF sets a special return code if a record produced for an originating node
contains truncated data. In this case, you may want to examine the VTAM buffer

Chapter 18. Using the Script Generator Utility 235

trace using the IPCS or ACF/TAP and inspect the truncated data. Records
produced for destination node names (data received by the terminal) are not
checked for truncated data.

ITPVTBRF can process a trace of cross-domain sessions as well as terminal session
data. It looks at cross-domain commands to determine session partners and
addresses.

Note: ITPVTBRF must have information from the first volume of a
multiple-volume NPM log data set before it can reformat your data. If ITPVTBRF
does not reference this volume before other volumes in the log data set, the
program sets a return code of 8 (RC=8) indicating that the data on the input data
set was formatted incorrectly.

Running ITPVTBRF from the WSim/ISPF Interface
To run ITPVTBRF from the WSim/ISPF Interface, follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 5 from the WSim/ISPF Interface main panel and press Enter. The
Generate Message Decks and STL Programs panel is displayed.

3. Select option 2 from this panel and press Enter. The Generate Message Decks
from Captured Trace Data panel is displayed.

4. Select option 1 from this panel and press Enter. The Reformat NPM and VTAM
Buffer Traces panel is displayed.

Note: You can also type “NPMVTAM” on the WSim/ISPF Interface main panel
command line and press Enter to display this panel.

5. Fill in the appropriate fields on this panel and press Enter to run ITPVTBRF.

For more information on the WSim/ISPF Interface, refer to Part 1, “General
utilities,” on page 1.

Using JCL to run ITPVTBRF
The JCL shown in the example below executes ITPVTBRF. The TAPEIN DD
statement specifies the input data set, and the TAPEOUT DD statement specifies
the output data set.
//VTBRFJOB JOB
//JOBLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//VTBRF EXEC PGM=ITPVTBRF
//TAPEIN DD UNIT=TAPE,DISP=OLD,VOL=SER=TAPEIN,LABEL=(,NL)
//TAPEOUT DD UNIT=TAPE,DSN=TAPEOUT,DISP=(NEW,KEEP),LABEL=(,NL)

New ITPVTBRF execution parameters
You can use the following execution parameters when running ITPVTBRF:

INVERT
Allows scripts to be generated in situations where the VTAM buffer trace
was active for an LU that did not capture "inbound" data to VTAM. When
INVERT is specified, "outbound" data from VTAM will be reformatted to
allow for script generation by ITPSGEN.

SSCPNAME=sscp_name
Allows an SSCP name other than the default ("VTAM") to be specified.

236 WSim V1R1 Utilities Guide

|

|

ITPVTBRF return codes
At the end of execution, ITPVTBRF sets a return code to indicate the status of the
execution. ITPVTBRF execution ends prematurely for all return codes except 0, 28,
32, and 40.

Code Meaning

0 Execution ended successfully.

4 An immediate end of file was encountered on the input data set.

8 The data on the input data set has the incorrect format.

12 An unrecoverable I/O error was encountered on TAPEIN.

16 An unrecoverable I/O error was encountered on TAPEOUT.

20 The TAPEIN data set could not be opened.

24 The TAPEOUT data set could not be opened.

28 No data was written to TAPEOUT data set.

32 At least one record with truncated data was processed.

40 A lost data record was encountered on the NPM VTAM log data set.

Step 3. Sorting the trace data
The Script Generator Utility assumes that the trace data has been sorted into
ascending order based on the name, date, and time fields. You can sort the data
with any standard sort program.

If you use the DFSORT program product to sort a data set that is already
formatted correctly for input to ITPSGEN, you can code the SORT control
statement as follows:
SORT FIELDS=(13,8,CH,A,23,2,FI,A,9,4,PD,A,5,4,FI,A),EQUALS

In the above example, the data set is sorted by LU name (13,8,CH,A), then by
session number (23,2,FI,A), then by date (9,4,PD,A), and finally by time (5,4,FI,A).

Be sure to specify the sort control information so that the sorted output data set
has the same block size as the reformatted trace data input. The default block size
is 8192 but block sizes up to a maximum of 32760 can be specified.

You can also sort the trace data using the WSim/ISPF Interface. To do this, follow
these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 5 from the WSim/ISPF Interface main panel and press Enter. The
Generate Message Decks and STL Programs panel is displayed.

3. Select option 2 from this panel and press Enter. The Generate Message Decks
from Captured Trace Data panel is displayed.

4. Select option 2 from this panel and press Enter. The Sort Trace Data Using
DFSORT panel is displayed.

Note: You can also type “SORTTRCE” on the WSim/ISPF Interface main panel
command line and press Enter to display this panel.

Chapter 18. Using the Script Generator Utility 237

|

|

When generating STL scripts using the WSim/ISPF Interface, you must specify
a data set to contain the generated STL source. Use the field labeled Generated
STL programs on panel ITP0SGNP to specify this data set. A member will be
created in this data set for each STL MSGTXT that is generated. The data set
can have the same attributes as those used for the generated message decks
data set. The following is an example of the ITP0SGNP panel as it might look
when generating STL scripts.

5. Fill in the appropriate fields on this panel and press Enter.

For more information on the WSim/ISPF Interface, refer to Part 1, “General
utilities,” on page 1. Refer to the DFSORT Application Programming Guide for
additional information on sorting.

Step 4. Defining the network
This section describes the network definitions that are used as input to the Script
Generator Utility.

The network definitions used as input to ITPSGEN should be complete,
syntactically correct WSim networks. They must be capable of being processed
without errors by the WSim Preprocessor. They do not need to be preprocessed
before being used as input.

Each network should have a single message generation sequence PATH statement
defined (path 0), with a PATH=(0) operand specified at the network level. You
should not include any other message generation sequence PATH operands or
statements. If you select the network update option, PATH statements will be
added to the network. The PATH named on the network statement will be the
PATH used for any terminals or devices for which no messages are found on the
trace data set; thus, the path statement should name a deck that contains only a
WAIT statement followed by a BRANCH back to that WAIT statement.

ITPSGEN uses the WSim network definitions to determine the terminal names for
which decks are to be generated. These names, taken from the LU statements in

ITP0SGNP WSim: Generate Message Decks from Sorted Trace Data

Type information. Then Press Enter
More: +

Input Data Sets
Sorted trace ’USERID.SORTED.TRACE’

Tape: Serial numbers ,
File number . . (0-9999)
Label type . . (NL or SL)

Model script ’USERID.NETWORKS(MODEL)’
Control commands ’USERID.CONTROL(SGEN)’

Output Data Sets
Generated message decks ’USERID.MSGFILE’
Generated STL programs ’USERID.STLIN’
Updated networks ’USERID.TESTFILE’
Sequential output . . . ’USERID.SEQOUT’
Printer output ’USERID.SYSPRINT’

Command ===>
F1=Help F2=Split F3=Exit F4=Edit input F5=Refresh F6=Browse prt
F7=Bkwd F8=Fwd F9=Swap F10=Edit ctl F11=Save F12=Cancel

Figure 46. Generating message decks from sorted trace data

238 WSim V1R1 Utilities Guide

the definitions, must correspond to the resource names used in the trace data set.
There should be no duplication of names for terminals defined in the input
network definitions.

The terminal type for each name and the think time option (immediate or unlock)
are determined from the network definition.

A MAXSESS operand is added to all applicable LU types when the network
update option is specified.

A terminal name will be considered eligible for message generation if it is a type
supported by ITPSGEN and if it does not have a PATH operand or if a PATH=(0)
operand is specified or defaulted. If the PATH=(0) operand is specified on the LU
statement, a duplicate operand will be generated if the network update option is
used.

The user time interval (UTI) defined for a network or for an individual terminal is
also taken from the network definitions. The UTI is used in calculating delays.

Below provides an example network definition for ITPSGEN.
SGENNET NTWRK BUFSIZE=2048, BUFFER SIZE FOR MESSAGES

DELAY=A1, RANDOM AVERAGE DELAY FROM 0->2 TIMES 1
DISPLAY=(24,80,32,80), PRIMARY & ALTERNATE DISPLAY SIZES
DLOGMOD=D4A32783, LOGON MODE TABLE ENTRY FOR LOCAL LU2
EXTFUN=YES, 3270 EXTENDED FUNCTION SUPPORT PROVIDED
HEAD=’SCRIPT GENERATOR’, HEADER FOR ONLINE REPORTS
INIT=SEC, WSim WILL INITIATE SECONDARY SESSIONS
ITIME=1, PRINT NTWRK INTERVAL REPORT EACH MINUTE
LUTYPE=LU2, TYPE OF SIMULATED SNA LOGICAL UNIT
MAXSESS=(0,1), ONLY ONE SECONDARY SESSION WITH LU2
OPTIONS=(DEBUG,CONRATE,MONCMND), SNA SEGM/RU’S & OPCMD
PATH=(0), DEFAULT PATH STATEMENT
RESOURCE=WSIMPLU, NAME OF APPLICATION UNDER TEST
RSTATS=YES, ONLINE RESPONSE TIME STATISTICS
THKTIME=UNLOCK, START DELAY CALC AFTER KEYBOARD RESTORE
USERAREA=4, SIZE OF STORAGE FOR SCRATCH PAD AREA
UTI=100 1 SEC. USER TIME INTERVAL FOR DELAYS

*

0 PATH SGENWAIT
*

VTAMAPPL APPLID=WSIM0101, APPLID DEFINED TO VTAM
BUFSIZE=2048 BUFFER SIZE OF SIMULATED LU

*
TAF05F01 LU LOGDSPLY=BOTH, LOG SCREEN IMAGES

MSGTRACE=YES LOG MESSAGE GENERATION TRACE RECORDS
*
SGENWAIT MSGTXT
LOOP WAIT

BRANCH LABEL=LOOP
ENDTXT

Step 5. Generating the message generation decks
The Script Generator Utility is provided by WSim to create message generation
decks. It can also update the required input network definitions to reflect the
message generation decks created.

Chapter 18. Using the Script Generator Utility 239

To run ITPSGEN, you must have a sorted trace data set and at least one WSim
network definition. You can also include control commands and additional
network definitions.

The principal outputs are the generated message generation decks. Other outputs
are reports, updated network definitions, and a composite sequential data set
containing all message generation decks and network definitions.

The sorted input data set is scanned for records that contain terminal names in the
submitted networks. Message generation decks with the same names are generated
based on the captured data. These decks are written to a partitioned data set as
they are built. After all the decks are generated, the network definitions can be
updated to reflect the new decks. You can also copy all the message generation
decks and updated networks to a single sequential data set.

ITPSGEN terminal types supported
The terminal types ITPSGEN supports include most of the types that can be
specified on the LU statements in a WSim network. They are:

LU0 LU6 LU1 LU62 LU2

LU4

You can generate a deck for a terminal type that is different from the terminal type
for which the data was captured. You should check the deck carefully because it is
not always possible to translate the deck accurately. ITPSGEN does not support the
selector pen for 3270 devices. The program does support partitions and provides
limited support for the trigger field AID.

For 3270 terminals, generated scripts assume all data can be entered by the
simulated operator during WSim message generation. Data in preinitialized fields
may cause WSim to log informational messages during message generation. You
may need to modify your script if this happens.

Running ITPSGEN
You can invoke ITPSGEN from the WSim/ISPF Interface. You can also run
ITPSGEN as a standard job on MVS. “Using JCL to run ITPSGEN” on page 252
contains an example of ITPSGEN JCL. “Using a CLIST to run ITPSGEN” on page
253 contains a sample CLIST for running ITPSGEN under TSO.

ITPSGEN execution parameters
You can specify the following parameters for ITPSGEN.

CTL
Specifies that control commands should be read from the CTLIN data set.

NOCTL
Specifies that no control commands should be read from the CTLIN data set
and default values for the control commands are used. If neither CTL nor
NOCTL is specified, CTL is the default.

PRTLNCNT=nnn
Specifies the maximum number of lines printed on an output page before
beginning a new page. The nnn variable is an integer from 35 to 255. The
default value for nnn is 60.

240 WSim V1R1 Utilities Guide

ITPSGEN data set requirements
The following data sets are required to run ITPSGEN:

INITDD DD Defines a partitioned data set to receive the network being processed. The
data set can be the same as the MSGDD data set. The BLKSIZE for the
data set must be a multiple of 80.

MSGDD DD Defines a partitioned data set to receive the message generation decks
being processed. The data set can be the same as the INITDD data set. The
BLKSIZE for this data set must be a multiple of 80.

SYSUT2 DD Defines a partitioned data set that ITPSGEN will use as work space for
storing network definition statements. The data set should be large enough
to contain all network definitions being processed.

SYSUT3 DD Defines a partitioned data set that ITPSGEN will use as work space for
storing the message generation decks. The data set should be large enough
to contain all message generation decks being processed. It must not be
the same data set defined by SYSUT2.

SYSPRINT DD Defines the output printer or data set to receive the printed output of this
job.

MSGTXT DD Defines the output data set to contain the generated message generation
decks. The BLKSIZE for this data set must be a multiple of 80.

TAPEIN DD Defines the input trace data set. The default block size is 8192 but block
sizes up to a maximum of 32760 can be specified.

SYSIN DD Specifies the data set containing the input data for ITPSGEN (network
definitions and associated message generation decks not created by
ITPSGEN).

RATEDD DD Defines the data set that contains the rate table to be used if the network
uses a rate table. This data set is optional.

NTWRK DD Defines the data set to contain the updated network definitions if you
request the network update option. The BLKSIZE for this data set must be
a multiple of 80. This data set is optional.

SEQOUT DD Defines the sequential data set to contain all generated message generation
decks and updated network definitions if you request the sequential
output option. The BLKSIZE for this data set must be a multiple of 80.
This data set is optional.

CTLIN DD Defines the sequential data set containing control commands for ITPSGEN.
The BLKSIZE for this data set must be a multiple of 80. This data set is
optional.

The relationship between the SYSIN, TAPEIN, INITDD, MSGDD, NTWRK, and
MSGTXT data sets is shown in Figure 47.

Note: The MSGTXT, MSGDD, NTWRK, and INITDD DD statements can all
reference the same data set, or they can reference different data sets.

Processed
Input by ITPSGEN

network updated network
SYSIN DD ─┬──────────────
 INITDD DD ──────────────────────
 NTWRK DD

│
│ message text and
│message text generated text
└──────────────
 MSGDD DD ─┬────────────────────
 MSGTXT DD

│
TAPEIN DD ─────────────────────────────┘

Figure 47. Relationship between ITPSGEN data sets

Chapter 18. Using the Script Generator Utility 241

ITPSGEN control commands
ITPSGEN control commands are 80-byte records from the data set defined by the
CTLIN DD statement. There can be only one command per record and each
command must be complete on one record. All data must be contained in columns
1 to 71 of the record. A command can start in any column of the record. Operands
must be preceded by at least one blank. Comments can be entered after the
operands. Comments must be preceded by at least one blank. A command with an
asterisk (*) in the first position is considered a comment.

Understanding control command description conventions
The following conventions are used in the control command descriptions:
v Capital letters represent values you code directly without change.
v Italics represent parameters for which you must supply a value.
v Brackets, [], enclose operands or symbols that are either optional or conditional.

An optional operand is an operand that you may choose to code or omit,
independent of other operands. Omitting it may cause a specific default value to
be assumed. The default value is always given in the operand description.
A conditional operand is an operand that you may need to code or omit,
depending on how you code (or omit) other operands on the control command.
For each conditional operand, the conditions under which you should code or
omit the operand are indicated.

v Braces, { }, indicate that an operand has a value that you must choose from the
stacked items.

v An ellipsis in parentheses, (...), indicates that you may code a sequence of values
within parentheses.

v Default values are underlined.

DELAY and NODELAY commands

DELAY [ISTART]

This command specifies that DELAY statements will be inserted in the message
generation decks between each message. The delays are calculated from the time
stamps on the log data set and assume the user time interval (UTI) as specified for
that device. The delays are rounded to the next higher multiple of the UTI. If the
UTI is 0, no DELAY statements will be inserted for that terminal.

If you specify THKTIME=UNLOCK in the network definition for the terminal, the
delay calculated is from the time of the last receive record to the time of the
transmit record. If you specify THKTIME=IMMED in the network definition for
the terminal, the delay calculated is from the time of the first record of the
previous transmit message to the time of the first record of the current message.

The initial delay (before the first message) can be calculated only if a start time is
specified on the TIME control command or if a BIND or SDT command has been
received and recorded before the first message. If ISTART is not specified, the time
used to calculate the initial delay will be the latest of the start time specified on the
TIME control command and the time recorded for any such command. The initial
delay is from the start time thus determined to the time of the first record of the
initial transmit message.

242 WSim V1R1 Utilities Guide

The method of calculation of the initial delay can be changed from the default
previously described by specifying the ISTART operand of the DELAY control
statement.

ISTART
Function: The ISTART operand specifies that the start time used to determine
an initial delay is only to be taken from the TIME control statement. Any BIND
and SDT request units are ignored for purposes of initial delay calculation.

Default: The default is to calculate initial delays as described above for the
case of no ISTART operand, taking into account the BIND or SDT RUs, as well
as the start time specified on the TIME control statement.

If no specific start time for an initial delay can be determined, no DELAY statement
will be generated before the initial TEXT. When ISTART is specified, this will
always occur if the TIME control statement specifies START or ALL. If ISTART is
not specified, this will happen if both the TIME control statement specifies START
or ALL and BIND and SDT RUs are not found in the traced data.

NODELAY

This command specifies that no DELAY statements are to be inserted into the
message generation decks. If neither DELAY nor NODELAY is specified,
NODELAY is assumed.

LIMIT and NOLIMIT commands

LIMIT nnnnn

This command specifies the number of messages to be generated for any one
terminal. If the limit is reached, the message generation deck ends.

nnnnn
Function: Specifies that no more than nnnnn messages are to be generated.

Format: The nnnnn operand is a decimal number from 1 to 65535.

NOLIMIT

This command specifies that no limit should be imposed on the number of
messages to be generated per terminal. If neither LIMIT nor NOLIMIT is specified,
NOLIMIT is assumed.

LIST and NOLIST commands

LIST

Chapter 18. Using the Script Generator Utility 243

This command specifies that all message generation decks should be listed in the
SYSPRINT data set as they are created.

NOLIST

This command specifies that the message generation decks should not be listed in
the SYSPRINT data set. If neither LIST nor NOLIST is specified, NOLIST is
assumed.

NTWRK and NONTWRK commands

NTWRK [{LIST|NOLIST}]

This command specifies that the networks submitted as input should be updated
to reflect the generated message generation decks.

{LIST|NOLIST}
Function: The LIST operand specifies that the networks should be listed in the
SYSPRINT data set as they are updated.

The NOLIST operand specifies that the networks should not be listed in the
SYSPRINT data set as they are updated.

Default: NOLIST is the default.

NONTWRK

This command specifies that the networks submitted as input should not be
updated to reflect the message generation decks generated. If neither NTWRK nor
NONTWRK is specified, NONTWRK is assumed.

REPORT command

REPORT [SUMMARY|FULL]

This command specifies whether a summary and a detail report or only a
summary report should be printed at the end of processing. “ITPSGEN printed
output” on page 249 summarizes the contents of each type of report.

{SUMMARY|FULL}
Function: The SUMMARY operand specifies that only a summary report is to
be printed.

The FULL operand specifies that both a summary and detail report are to be
printed.

Default: If no REPORT command is specified, only a summary report is
produced.

244 WSim V1R1 Utilities Guide

RESP and NORESP commands

RESP [{offset|0}][,{maxlen|25}]

This command specifies that RESP operands should be added to the CMND
statements and the last TEXT statement for each message generated. The RESP
data will be up to 25 bytes of the last message received before the next transmit
message and following the message for which text is being generated. Received
messages shorter than the offset specified will be ignored.

The origin of this data is the beginning of the received data plus the specified
offset. The beginning of the received data is the beginning of the request unit (RU)
for SNA terminals, and the beginning of the recorded data for all other terminals.

A maximum of 44 characters (including hexadecimal delimiters, hexadecimal
digits, text characters, and duplicated delimiter characters) will be included in the
deck portion of the RESP data. If no data is received between messages or SNA
commands, no RESP data will be added to the TEXT statement or the CMND
statement.

Examples of IF statements to use the RESP operands are shown below.
0 IF LOC=RH+0,TEXT=’01’,ELSE=IGNORE,STATUS=HOLD,SNASCOPE=REQ
1 IF TEXT=RESP,LOC=RU+0,COND=NE,THEN=B-QUIT,STATUS=HOLD,SNASCOPE=REQ

offset
Function: Represents the offset from the beginning of the data to the start of
the data to be included in the RESP data.

Format: The offset operand is a decimal number from 0 to 5999.

Default: The default for offset is 0.

maxlen
Function: Represents the maximum number of bytes from the received data
that should be included in the RESP data.

Format: The maxlen operand is a decimal number from 1 to 25.

Default: The default for maxlen is 25.

NORESP

This command specifies that no RESP data should be added to the TEXT or
CMND statements for the messages being generated. If neither RESP nor NORESP
is specified, NORESP is assumed.

SEQOUT and NOSEQOUT commands

SEQOUT [{LIST|NOLIST}]

Chapter 18. Using the Script Generator Utility 245

This command specifies that all generated message generation decks and any
updated network definitions should be copied to a sequential data set when
generation is completed.

{LIST|NOLIST}
Function: The LIST operand specifies that the sequential output records should
be listed in the SYSPRINT data set.

The NOLIST operand specifies that the sequential output records should not be
listed in the SYSPRINT data set.

Default: NOLIST is the default.

NOSEQOUT

This command specifies that the generated message generation decks and any
updated network definitions should not be copied to a sequential data set when
generation is completed. If neither SEQOUT nor NOSEQOUT is specified,
NOSEQOUT is assumed.

STL and NOSTL commands

STL

This command is used to determine whether scripts are to be generated in the
Structured Translator Language (STL). This command provides you with an option
for all types of script generation except CPI-C. CPI-C scripts are exclusively
generated in STL. All other types of scripts can be generated in either WSim
Scripting Language or STL.

STL specifies that the target language for script generator output is Structured
Translator Language (STL).

NOSTL

NOSTL specifies that the target language for script generator output is WSim
Scripting Language. NOSTL is the default value.

TIME commands

TIME {ALL}
{{hhmmss}-{hhmmss}}
{hhmm} {hhmm}
{START} {END}

This command specifies the time limits of the records on the sorted trace data set
from which records are to be selected. The first field specifies the start time and the

246 WSim V1R1 Utilities Guide

second field specifies the end time. All times are inclusive. If you do not specify a
TIME command, all records will be processed.

ALL
Function: The ALL operand specifies that the entire data set should be
processed.

Default: If TIME is not specified, the default is ALL.

START
Function: The START operand indicates that the start time should be the
beginning of the input data set.

END
Function: The END operand indicates that the end time should be the end of
the input data set.

hhmmss
Function: The hhmmss operand is a time entered in hours, minutes, and
seconds and in 24-hour format.

hhmm
Function: The hhmm operand is a time entered in hours and minutes and in
24-hour format.

Notes:

v Unless TIME ALL is specified, any format of the first operand can be paired
with any format of the second operand; for example, TIME 134500-END.

v If you want a startup delay, you must specify a start time on the TIME control
command or use the ISTART operand of the DELAY command. See “DELAY and
NODELAY commands” on page 242.

* Comment

* [data]

This command specifies a comment. The command can contain any data following
the asterisk. The command will be listed with the other input commands before
the output reports. The command will be ignored during processing by ITPSGEN.

ITPSGEN message generation decks
The message generation decks generated by ITPSGEN normally have the same
names as the terminals for which they are generated. For LUs with multiple
sessions, separate decks are generated for each session and a unique name is
assigned. The message generation decks consist primarily of TEXT statements. For
3270 terminal types, ERIN, CURSOR, EREOF, JUMP PID=n, CLEARPTN, and the
various attention identifier keys (ENTER, CLEAR, PFnn, PAn) are also generated as
appropriate. DELAY statements, as well as RESP data on the TEXT statements, can
be added if those options were selected.

Messages generated for SNA terminal types from SNA traces are checked to
determine if an RH statement needs to be included. Examples of conditions
requiring an RH statement to be included are the following:
v Definite response 2 indicated

Chapter 18. Using the Script Generator Utility 247

v End bracket being transmitted
v Chains other than only in chain.

This check is omitted for 3270 terminal types.

In addition, certain SNA commands encountered in the trace input will cause
CMND statements to be generated. The commands for which CMND statements
will be generated are the following:
v Initiate-Self
v Terminate-Self
v Bid
v Bracket Initiation Stopped
v Quiesce at End of Chain
v Release Quiesce
v Request Shutdown
v Stop Bracket Initiation
v Signal
v Set and Test Sequence Numbers
v Unbind.

Any other commands encountered will be ignored.

A SETSW statement will be generated to turn device switch 7 ON whenever an
SNA response is generated. If you want to use these decks as a starting point for
your own decks, this statement lets you structure your IF statements to cause the
response to be generated properly.

A WAIT statement is inserted at the end of the generated message generation deck.
This statement is followed by a BRANCH back to the WAIT. No DELAY is
generated after the last message.

The message generation decks are written to the MSGTXT data set. You can use
this data set as the MSGDD data set for a subsequent execution of WSim or the
Preprocessor.

ITPSGEN updated networks
When the NTWRK statement is specified, ITPSGEN adds PATH statements and
PATH operands to the input networks. Added PATH statements have the same
name as the message generation deck generated for a terminal or device. PATH
operands are added to the LU statements for which the message generation decks
are generated.

The entire updated network is written to the NTWRK data set. You can use this
data set as the INITDD data set on subsequent execution of WSim or the
Preprocessor.

ITPSGEN sequential output format
When you specify the SEQOUT statement, all output that has been written to
either the MSGTXT or NTWRK data sets is copied to a single sequential data set
defined by the SEQOUT DD statement. If you specified the network update option,
each updated network definition is written to the SEQOUT data set, followed
immediately by the message generation decks generated for terminals defined by

248 WSim V1R1 Utilities Guide

that network. All message generation decks generated for a given network are
grouped together in the sequential output.

The message generation decks referred to in the networks but not generated by
ITPSGEN are not included in the sequential output data set. If you use the
SEQOUT data set as input to the Preprocessor, the MSGDD DD statement for the
preprocessor run should be the same as the MSGDD DD statement for ITPSGEN
because these message generation decks were placed in this data set during the
initial processing of the network by ITPSGEN.

ITPSGEN printed output
All processed commands and all error messages are written to the SYSPRINT data
set. Messages indicating the successful initialization of the networks submitted as
input are also written to the SYSPRINT data set. If the appropriate LIST options
are specified, the generated message generation decks, the updated network
definitions, and the sequential output data set can be listed as they are created.

A report is produced at the end of processing that provides information about each
input network. This information includes the name of the network, the number of
terminals in the network eligible to have message generation decks generated, the
number of message generation decks generated, the number of message generation
decks for which the limit specified by the LIMIT command was reached, and the
number of PATH statements added.

If you specify REPORT FULL, a detailed report is also produced. This report
specifies, for each eligible terminal:
v Its name
v Its network name
v The number of messages generated
v The time the first message was generated
v The time the last message was generated
v The PATH name added to the terminal definition in the network definition.

SEQOUT data set
If the SEQOUT control command is specified, ITPSGEN produces a SEQOUT data
set as output. If you are generating STL scripts, the SEQOUT data set will contain
network definition statements and STL code. The STL must be translated to the
WSim Scripting Language before you can run a simulation.

Note: SEQOUT data sets that contain STL source code are structured differently
than SEQOUT data sets that contain WSim Scripting Language source code. In
SEQOUT data sets that contain STL source, the network definition is surrounded
by the @NET and @ENDNET statements to inform the STL Translator to pass it to
the Preprocessor. As with non-STL script generation, the network definition will be
updated to reflect the generated scripts if the NTWRK control command is
specified.

Sample SEQOUT data set
The following is a sample SEQOUT data set.

Chapter 18. Using the Script Generator Utility 249

@NET
IDCTSO NTWRK UTI=100,LOGDSPLY=BOTH
ITPIDC PATH ITPIDC
0 PATH SGENTXT
* Model network for ITPECHO via IDC.
VAPPL1 VTAMAPPL APPLID=ITPIDC,INIT=SEC,BUFSIZE=1920
ITPIDC LU PATH=(ITPIDC),

LUTYPE=LU2
*
@ENDNET
ITPIDC: MSGTXT

suspend(3)
delay(4)
erin
cursor(1,27)
type ’userid’
cursor(2,7)
transmit using ENTER
delay(5)
erin
cursor(8,20)
type ’ABCDEF’
transmit using ENTER
delay(21)
erin
cursor(5,6)
transmit using ENTER
delay(6)
erin
cursor(4,14)
type ’9.6;log’
transmit using ENTER
delay(3)
erin
cursor(4,21)
type ’/d a,1’
transmit using ENTER
delay(2)
erin
cursor(4,21)
transmit using PF3
delay(3)
erin
cursor(4,21)
transmit using PF3
delay(2)
erin
cursor(4,14)
transmit using PF3
delay(2)
erin
cursor(1,9)
type ’logoff’
cursor(2,7)
transmit using ENTER
do forever

wait
end
ENDTXT

Figure 48. Sample SEQOUT data set

250 WSim V1R1 Utilities Guide

ITPSGEN return codes
At the end of execution, ITPSGEN sets a return code to indicate the status of the
execution. ITPSGEN execution ends prematurely for all return codes except 0.
ITPSGEN can return the following codes:

Code Meaning

0 Execution ended successfully.

4 A parameter error occurred.

8 The SYSPRINT data set could not be opened.

12 An invalid control command or control command operand was read from the CTLIN data
set.

16 No NTWRK statement was read from the SYSIN data set before the first MSGTXT
statement was encountered.

20 At least one of the networks submitted as input would not initialize.

24 Not enough storage was available for execution to continue.

28 The SYSUT3 data set failed to open.

32 The SYSUT2 data set failed to open.

36 The MSGDD data set failed to open.

40 The INITDD data set failed to open.

44 The SYSIN data set failed to open.

48 The INITDD, MSGDD, or RATEDD data set failed to open or not enough storage is
available for the IVT control block.

52 The MSGTXT data set failed to open.

56 The TAPEIN data set failed to open.

60 The first record read from the TAPEIN data set was not formatted properly for ITPSGEN.

64 A STOW operation for a member of a partitioned data set failed.

68 An error occurred while writing to an output data set.

Sample output for ITPSGEN
Figures Figure 49 and Figure 50 on page 252 show an example of the report
produced by ITPSGEN.

Summary Report
The trace records eligible count will appear on the summary report for each network
defined in the model network. This field contains a count of the total number of
input trace records that were eligible for script generation processing. An example
of a summary report containing the trace records eligible field is shown below:

Detail Report
The trace records eligible count will appear on the detail report for each terminal or
resource in the model network. An example of a detail report containing the trace

ITPSGEN GENERATE OUTPUT TIME 13.45.09, JUNE 3, 2002 PAGE 44
GENERATION REPORT - SUMMARY

TERMINALS TRACE RECORDS MSGTXTS LIMIT PATHS
NETWORK ELIGIBLE ELIGIBLE GENERATED REACHED ADDED

NET1 3 97 5 0 3
NET2 3 0 0 0 0

Figure 49. Summary Report

Chapter 18. Using the Script Generator Utility 251

records eligible field is shown below:

Using JCL to run ITPSGEN
The example below shows JCL that you can use to run ITPSGEN.
//SGENJOB JOB
//JOBLIB DD DSNAME=WSIM.SITPLOAD,DISP=SHR
//STEP1 EXEC PGM=ITPSGEN,PARM=’CTL’
//RATEDD DD DSNAME=WSIM.SITPRTBL,DISP=SHR
//INITDD DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//MSGDD DD DSNAME=WSIM.MSGFILE,DISP=SHR
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSPRINT DD SYSOUT=A
//MSGTXT DD DSNAME=WSIM.MSGFILE,DISP=SHR
//STLTXT DD DSNAME=WSIM.STLIN,DISP=SHR
//NTWRK DD DSNAME=WSIM.TESTFILE,DISP=SHR
//SEQOUT DD DSNAME=SEQOUT,DISP=SHR
//TAPEIN DD UNIT=TAPE,DISP=OLD,VOL=SER=TAPEIN,LABEL=(,NL)
//CTLIN DD *
* CONTROL STATEMENTS FOR ITPSGEN SCRIPT GENERATOR *
LIST
DELAY
RESP
SEQOUT
NTWRK
REPORT FULL

/*
//SYSIN DD *
SGENNET NTWRK BUFSIZE=2048, BUFFER SIZE FOR MESSAGES

DELAY=A1, RANDOM AVERAGE DELAY FROM 0->2 TIMES 1
DISPLAY=(24,80,32,80), PRIMARY & ALTERNATE DISPLAY SIZES
DLOGMOD=D4A32783, LOGON MODE TABLE ENTRY FOR LOCAL LU2
EXTFUN=YES, 3270 EXTENDED FUNCTION SUPPORT PROVIDED
HEAD=’SCRIPT GENERATOR’, HEADER FOR ONLINE REPORTS
INIT=SEC, WSim WILL INITIATE SECONDARY SESSIONS
ITIME=1, PRINT NTWRK INTERVAL REPORT EACH MINUTE
LUTYPE=LU2, TYPE OF SIMULATED SNA LOGICAL UNIT
MAXSESS=(0,1), ONLY ONE SECONDARY SESSION WITH LU2
OPTIONS=(DEBUG,CONRATE,MONCMND), SNA SEGM/RU’S & OPCMD
PATH=(0), DEFAULT PATH STATEMENT
RESOURCE=WSIMPLU, NAME OF APPLICATION UNDER TEST
RSTATS=YES, ONLINE RESPONSE TIME STATISTICS
THKTIME=UNLOCK, START DELAY CALC AFTER KEYBOARD RESTORE
USERAREA=4, SIZE OF STORAGE FOR SCRATCH PAD AREA
UTI=100 1 SEC. USER TIME INTERVAL FOR DELAYS

*

0 PATH SGENWAIT
*

ITPSGEN GENERATE OUTPUT TIME 13.45.09, JUNE 3, 2002
PAGE 45

GENERATION REPORT - DETAIL

TRACE RECORDS MESSAGES START STOP
TERMINAL NETWORK ELIGIBLE GENERATED TIME TIME PATH

ITPECHO NET1 77 37 16:09:05.80 16:09:42.21 ITPECHO
ITPECHO NET2 0 0
NET1TP1 NET1 9 5 08:30:10.94 08:30:20.72 NET1TP1
NET2TP1 NET2 0 0
NET1TP2 NET1 11 3 08:30:10.94 08:30:20.73 NET1TP2
NET2TP2 NET2 0 0

Figure 50. Detail Report

252 WSim V1R1 Utilities Guide

VTAMAPPL APPLID=WSIM0101, APPLID DEFINED TO VTAM
BUFSIZE=2048 BUFFER SIZE OF SIMULATED LU

*
TAF05F01 LU LOGDSPLY=BOTH, LOG SCREEN IMAGES

MSGTRACE=YES LOG MESSAGE GENERATION TRACE RECORDS
*

SGENWAIT MSGTXT
LOOP WAIT

BRANCH LABEL=LOOP
ENDTXT

/*

Using a CLIST to run ITPSGEN
The following example shows a CLIST that you can use to run ITPSGEN.
FREE DDNAME(SYSPRINT RATEDD INITDD MSGDD SYSUT2 SYSUT3)
FREE DDNAME(MSGTXT STLTXT NTWRK SEQOUT TAPEIN CTLIN SYSIN)
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(RATEDD) DATASET(’WSIM.SITPRTBL’) SHR
ALLOC DDNAME(INITDD) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(MSGDD) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(SYSUT2) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(SYSUT3) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(MSGTXT) DATASET(’WSIM.MSGFILE’) SHR
ALLOC DDNAME(STLTXT) DATASET(’WSIM.STLIN’) SHR
ALLOC DDNAME(NTWRK) DATASET(’WSIM.TESTFILE’) SHR
ALLOC DDNAME(SEQOUT) DATASET(’SEQOUT’) SHR
ALLOC DDNAME(TAPEIN) DATASET(’ITPSGEN.TAPEIN’) SHR
ALLOC DDNAME(CTLIN) DATASET(’ITPSGEN.CTLIN’) SHR
ALLOC DDNAME(SYSIN) DATASET(’ITPSGEN.SYSIN’) SHR
CALL ’WSIM.SITPLOAD(ITPSGEN)’ ’CTL’
FREE DDNAME(SYSPRINT RATEDD INITDD MSGDD SYSUT2 SYSUT3)
FREE DDNAME(MSGTXT STLTXT NTWRK SEQOUT TAPEIN CTLIN SYSIN)

Running ITPSGEN from the WSim/ISPF Interface
To run ITPSGEN from the WSim/ISPF Interface, follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 4 from the WSim/ISPF Interface main panel and press Enter. The
Generate Message Decks and STL Programs panel is displayed.

3. Select option 3 from this panel and press Enter. The Generate Message Decks
from Captured Trace Data panel is displayed.

4. Select option 3 from this panel and press Enter. The Generate Message Decks
from Sorted Trace Data panel is displayed.

Note: You can also type “GENDECKS” on the WSim/ISPF Interface main
panel command line and press Enter to display this panel.

5. Fill in the appropriate fields on this panel and press Enter to run ITPSGEN.

For more information on the WSim/ISPF Interface, refer to Part 1, “General
utilities,” on page 1.

Chapter 18. Using the Script Generator Utility 253

STL translation
Before you can run a script that was generated in STL, you must translate the STL
into WSim Scripting Language. If you want to translate all generated scripts
during the same STL invocation, point the STL input data set to the data set
produced by the script generator SEQOUT DD. Use the sample in “Sample JCL for
STL translation” when writing your own JCL to execute the WSim STL Translator.

Sample JCL for STL translation
You can use the following sample when writing your own JCL to execute the
WSim STL Translator.

Data compression
ITPSGEN now supports the two forms of data compression used in SNA. By
default, run-length encoding (RLE) is supported in all traced RU data. When a
BIND response is included in the traced RU data, Lempel-Ziv (LZ) encoding is also
supported if indicated in the BIND response. To decompress both types of RU
data, all RU data must be included in the traced data in order to recreate the
original uncompressed RU data.

Decompression errors are reported in the summary and detail reports. The specific
type of decompression error is indicated for the transmitted and received records
in the detail report.

The following sections include examples of detail and summary reports, and
provide possible code values for decompression errors.

Summary report
An example of a summary report containing a terminals with errors field is shown
below:

//STLJOB JOB
//***
//* Workload Simulator (WSim) 5655-I39 *
//***
//* STLJOB JCL *
//* Sample JCL to execute the WSim STL Translator (ITPSTL). *
//***
//STL EXEC PGM=ITPSTL,REGION=4096K
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//PARMDD DD DSN=WSIM.PARMDD,DISP=SHR
//RATEDD DD DSN=WSIM.SITPRTBL,DISP=SHR
//INITDD DD DSN=WSIM.TESTFILE,DISP=SHR
//SYSPRINT DD SYSOUT=A
//MSGDD DD DSN=WSIM.MSGFILE,DISP=SHR
//SEQOUT DD DSN=WSIM.STL.SEQOUT,DISP=SHR
//SYSLIB DD DSN=WSIM.STLIN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSIN DD DSN=WSIM.SEQOUT,DISP=SHR

Figure 51. Sample JCL for STL translation

254 WSim V1R1 Utilities Guide

GENERATION REPORT - SUMMARY

TERMINALS TRACE RECORDS MSGTXTS LIMIT PATHS TERMINALS
NETWORK ELIGIBLE ELIGIBLE GENERATED REACHED ADDED WITH ERRORS
VASGEN 15 10,669 0 0 0 4

Problems and possible solutions
Most problems experienced with message generation decks generated by ITPSGEN
fall within the following three problem categories. Scripts generated from terminal
data traffic captured arbitrarily are prone to these problems.
1. The simulated terminal never sends any data to the host application.
v Situation 1. The real terminal was inactive at the time the data was captured.

You can alter the PATH operand to refer to the message generation deck of a
terminal sending data to the host application.

v Situation 2. The captured data used to generate the message generation deck
did not include the logon or initialization sequence required to start a
conversation with the host application. You can code the required sequence
in a message generation deck and refer to it by the FRSTTXT operand on the
LU statement.

2. The simulated terminal stops sending data to the host application or the data
sent is out of synchronization with the host application.
v Situation 1. The timing between messages being generated by WSim is not

the same as for the real terminal. You can adjust the terminal's UTI value or
you can use the ITPSGEN DELAY command to insert DELAY statements
between TEXT statements.

v Situation 2. The messages generated by WSim do not correspond with what
the host application is expecting. You can use the ITPSGEN RESP option to
add RESP operands to each TEXT statement. The RESP operands and
network level IF statements added should synchronize the generated
messages with the host application. When the host application sends a
common acknowledgment to all transactions, you can add network IF
statements to the WSim network definition to wait for this acknowledgment.

v Situation 3. The host application does not unlock the keyboard for a 3270
terminal. If the terminal operator has to unlock the keyboard using the reset
key, this same operation must be performed in the WSim network by adding
an IF statement to execute a RESET statement. This will unlock the keyboard
and allow another message to be generated.

v Situation 4. The host application is expecting the terminal to perform a 3270
selector pen or magnetic stripe reader function. You must add the commands
to perform these functions to the message generation decks because their
generation is not supported by ITPSGEN.

3. The simulated terminal's initial delay is not what you expect.
The Script Generator Utility can calculate an initial delay for an LU. The initial
delay for each LU is based on the timestamp of the LU, BIND, or SDT 3

(whichever is last to be received before the first data is transmitted) for that LU
if the BIND or SDT is included in the trace within the time limits specified by
the TIME command. If no BIND or SDT is found for that LU within the time
limits, the START time from the TIME command is used for that LU. If no
specific START time is specified and no BIND or SDT is found for that LU, no
initial delay is generated for that LU.

3. The assumption is that if BIND or SDT is received before anything is transmitted, the terminal must be being acquired by the
application, rather than logging on to the application.

Chapter 18. Using the Script Generator Utility 255

The initial delay duration is limited to 65535 times the UTI value specified for
the LU.

CPI-C script generation support
The Script Generator Utility (ITPSGEN) enables you to generate CPI-C scripts
using data traffic captured from live system runs.

Function overview
The Script Generator Utility (ITPSGEN) can generate CPI-C scripts from traces of
CPI-C applications or other applications that produce LU 6.2 line flows.

The procedure for generating CPI-C scripts using ITPSGEN is similar to that used
for generating other types of scripts. To generate CPI-C scripts, you must follow
these steps:
1. obtain a trace of system activity
2. reformat the captured data using the appropriate utility program
3. sort the reformatted data
4. define a model network for your simulation
5. use ITPSGEN to generate the scripts in STL
6. translate the STL to WSim scripting language using the STL Translator

Before using ITPSGEN to generate CPI-C scripts, you must make minor
modifications to the existing script generation JCL or CLIST. Refer to “Changes to
JCL and CLISTs” on page 259 for information on the required modifications. You
can also create CPI-C scripts by invoking the script generator from the WSim/ISPF
Interface.

Note: If you are using the WSim/ISPF Interface, you may need to prep the model
network before translating the STL. Otherwise, the wait deck in the model network
may not be found during the STL translation.

Tracing considerations
The first step in generating CPI-C scripts is to capture a trace containing LU 6.2
line flows. The trace of system activity can be a VTAM buffer trace, an OS/2
Communications Manager (CM/2) trace, or an IBM Communications Server trace.
The trace must be reformatted before it can be used for script generation.

Note: Traces must contain the FMH-5 allocate request for any conversations that
are to be simulated. To ensure your trace contains the required allocate requests,
activate the trace before establishing any conversations you want to simulate.

A new Work Station Trace Reformatter utility (ITPWSTRF) has been provided with
WSim to allow you to reformat OS/2 Communications Manager (CM/2) and IBM
Communications Server traces. Refer to Chapter 20, “Work Station Trace
Reformatter Utility,” on page 275 for more information on ITPWSTRF. The existing
VTAM Buffer Trace Reformatter (ITPVTBRF) can be used to reformat VTAM buffer
traces. For all tracing options, the reformatted trace file must be sorted before it
can be used to generate CPI-C scripts. The files must be sorted in ascending order
by resource name, session, date, and time fields.

256 WSim V1R1 Utilities Guide

VTAM buffer trace
You can use a VTAM buffer trace as your source for generating a CPI-C script. The
trace may be recorded using either the GTF or the NPM data collection facility. You
should set up the trace in the same manner as you would when generating other
types of scripts (refer to Chapter 18, “Using the Script Generator Utility,” on page
231 for further information). Be sure to request a full buffer trace by specifying the
AMOUNT=FULL parameter. After you have traced a scenario that involves CPI-C
applications or other applications that produce LU 6.2 line flows, you must
reformat the captured trace file using the VTAM Buffer Trace Reformatter
(ITPVTBRF). Sort the resulting file using any standard sort program.

OS/2 Communications Manager (CM/2) trace
You can use the OS/2 Communications Manager (CM/2) trace facility to capture
an LU 6.2 trace. After capturing a trace, upload the trace file to the host as an
EBCDIC TEXT file. Reformat the trace file using the Work Station Trace
Reformatter (ITPWSTRF) and then sort the reformatted file. Refer to Chapter 20,
“Work Station Trace Reformatter Utility,” on page 275 for more information on
ITPWSTRF.

IBM Communications Server trace
You can also use the IBM Communications Server trace facility to capture an LU
6.2 trace. After capturing the trace, upload it to the host as an EBCDIC TEXT file.
Reformat the trace file using the Work Station Trace Reformatter (ITPWSTRF) and
then sort the reformatted file. Refer to Chapter 20, “Work Station Trace Reformatter
Utility,” on page 275 for more information on ITPWSTRF.

Tracing dependencies and restrictions
Before attempting to generate CPI-C scripts, you should be aware of tracing issues
that could affect whether CPI-C scripts accurately represent the intended testing
scenario. There is no information in the trace file that differentiates transaction
programs or conversations. The CPI-C Script Generator Utility makes the
assumption that each session represents a unique transaction program and that
each attach request on the session represents the start of a new serial conversation.
The Script Generator Utility could produce unexpected results in scripts generated
from traces containing multiple transaction programs (TPs) per LU, TPs processing
multiple overlapping conversations, or full-duplex sessions. You also should be
aware of the circumstances under which the VTAM buffer trace facility may fail to
produce complete traces of conversations.

Traces containing multiple TPs or conversations
The CPI-C Script Generation facility considers each unique session captured in a
system trace to represent a TP. As a result, scripts might not accurately represent
captured traces if the traces include any of the following:
v a TP processing multiple, overlapping conversations
v multiple TPs concurrently active on the same LU
v multiple instances of the same TP

If your trace includes a TP processing multiple conversations, the conversations
should be serial, rather than overlapping. If a trace contains a TP processing
multiple overlapping conversations or serial conversations using different sessions,
the script generated from the trace will not accurately represent the captured trace
because the script generator will create a different TP for each conversation.

Chapter 18. Using the Script Generator Utility 257

Traces that include multiple TPs concurrently active on the same LU also can
produce unexpected results in generated scripts. Depending on timing, two or
more TPs concurrently active on the same LU can have conversations sharing the
same session. If this is the case, the generated script will not accurately represent
the traced scenario.

If the trace contains multiple instances of the same TP, the resulting script will not
accurately represent the original traced scenario. If traces containing multi-instance
TPs are used as input to the script generator, you will need to make numerous
revisions to the generated scripts to make them accurately represent the original
traced scenario.

Note: You will obtain the best results using the CPI-C script generation facility if
your trace contains one single-instance TP per LU.

Full-duplex sessions
Trace files that contain one or more full-duplex sessions should be used with
caution. WSim simulations that use scripts generated from full-duplex sessions
may not accurately reproduce the original traced scenario. However, if a session is
identified as full-duplex but used as if it were half-duplex flip-flop, the generated
scripts should accurately reproduce the original traced scenario.

VTAM buffer traces
If you will be using VTAM Version 4 Release 4 (or later) buffer traces as your
source for generating CPI-C scripts, you should be aware of the circumstances
under which using the traces could result in incomplete CPI-C scripts. Buffer traces
produced by VTAM Version 4 Release 4 or later do not capture a complete trace of
conversations using the APPCCMD interface when the origin and destination are
within the same VTAM host. If the application being traced is using the VTAM
APPCCMD interface to communicate with a partner APPLID defined on the same
VTAM host, only the conversation setup information will be in the VTAM buffer
trace data set; all other data sent and received are not captured in the trace. As a
result, scripts generated from the trace will be incomplete.

Automatic script generation considerations
As a general rule, scripts produced by the Script Generator Utility should be used
as a base. It is unrealistic to expect to play-back hours of live data capture without
modification to the generated scripts. If the interdependencies among LUs or TPs
is minimal, the modification required should be minor. The best case scenario is
LU names need to be updated to match your test system environment. However,
as a general rule, there are timing relationships among traced LUs and TPs. For
instance, one TP is dependent on receiving an attach request from another TP, or a
particular LU makes a database update that is dependent on another LU having
made an earlier update to the same field. The script generator creates a script to
represent each SNA session as if it is totally independent of all other SNA sessions.
Therefore, to accurately reproduce the timing relationships among the generated
scripts, logic will need to be manually added to the scripts. This process will
require an intimate knowledge of the traced applications.

A good approach to automatic script generation is to limit the trace file to a known
transaction rather than tracing all transactions in a system simultaneously. Then
add logic to the generated scripts to handle timing relationships for that
transaction. Repeat this process for each transaction in the system to be simulated.
By limiting the scope of the trace file, timing relationships are much easier to
identify.

258 WSim V1R1 Utilities Guide

Network definitions
Before you can use ITPSGEN to generate CPI-C scripts or scripts for other
simulation types, you must define a model network. Refer to Creating WSim Scripts
for detailed information on coding network definition statements.

When creating a network definition for a CPI-C simulation, you must define a
single message generation sequence path as path 0. This will be the default path
used by any resources for which no script is generated.

A CPI-C APPCLU definition must be specified for each traced resource for which a
script will be generated. The APPCLU statement name must match a resource
name in the input trace file. There must be at least one TP statement following
each APPCLU statement. TP statement names can be selected at your discretion. If
automatic network updating is requested, the recommended approach is to specify
no operands on the TP statement.

Sample model network
The following is a sample of a network definition intended for use in generating
CPI-C scripts. Note that the APPCLU statement names are LU1 and LU2. For a
script to be generated for these resources, there must be records in the input trace
file with the same resource names.

Changes to JCL and CLISTs
Before using ITPSGEN to generate CPI-C scripts, you must add an STLTXT DD
definition to the existing script generation JCL or CLIST. This DD is for an output
partitioned data set that will contain the STL source. Each STL MSGTXT will be a
member in this partitioned data set. The data set can have the same attributes as
those used for the MSGTXT data set. The following sample JCL and CLIST
illustrate the addition of the STLTXT DD definition.

Sample JCL
The example below shows JCL that has been modified to enable ITPSGEN to
generate CPI-C scripts.

CPICSGEN NTWRK CONRATE=YES, * Message rates to the console
OPTIONS=(MONCMND), * Monitor operator commands
CPITRACE=VERB, * Trace CPI-C verbs
PATH=(0), * Default path statement
HEAD=’CPI-C NETWORK’

*
* Model network for CPI-C script generation.
*
0 PATH SGENTXT
*
LU1 APPCLU
CLIENT TP
*
LU2 APPCLU
SERVER TP
*
SGENTXT MSGTXT

WAIT
ENDTXT

Figure 52. Network definition for use in generating CPI-C scripts

Chapter 18. Using the Script Generator Utility 259

Sample TSO CLIST
The example below shows a CLIST that has been modified to enable ITPSGEN to
generate CPI-C scripts.

//SGENJOB JOB
//***
//* Workload Simulator (WSim) 5655-I39 *
//***
//* SGENJOB JCL *
//* Sample JCL to execute ITPSGEN. *
//***
//JOBLIB DD DSNAME=WSIM.SITPLOAD,DISP=SHR
//STEP1 EXEC PGM=ITPSGEN,PARM=’CTL’
//RATEDD DD DSNAME=WSIM.SITPRTBL,DISP=SHR
//INITDD DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//MSGDD DD DSNAME=WSIM.MSGFILE,DISP=SHR
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSPRINT DD SYSOUT=A
//MSGTXT DD DSNAME=WSIM.MSGFILE,DISP=SHR
//STLTXT DD DSNAME=WSIM.STLIN,DISP=SHR
//NTWRK DD DSNAME=WSIM.TESTFILE,DISP=SHR
//SEQOUT DD DSNAME=WSIM.SEQOUT,DISP=SHR
//TAPEIN DD UNIT=TAPE,DISP=OLD,VOL=SER=TAPEIN,LABEL=(,NL)
//CTLIN DD *
* CONTROL STATEMENTS FOR ITPSGEN SCRIPT GENERATOR *
LIST
SEQOUT
NTWRK
REPORT FULL
/*
//SYSIN DD *
CPICSGEN NTWRK CONRATE=YES, * Message rates to the console

OPTIONS=(MONCMND), * Monitor operator commands
CPITRACE=VERB, * Trace CPI-C verbs
PATH=(0), * Default path statement
HEAD=’CPI-C NETWORK’

*
* Model network for CPI-C script generation.
*
0 PATH SGENTXT
*
LU1 APPCLU
CLIENT TP
*
LU2 APPCLU
SERVER TP
*
SGENTXT MSGTXT

WAIT
ENDTXT

/*

Figure 53. JCL modified to enable ITPSGEN to generate CPI-C scripts

260 WSim V1R1 Utilities Guide

Changes to the WSim/ISPF Interface
When generating CPI-C scripts using the WSim/ISPF Interface, you must specify a
data set to contain the generated STL source. Use the field labeled Generated STL
programs on panel ITP0SGNP to specify this data set. A member will be created in
this data set for each STL MSGTXT that is generated. The data set can have the
same attributes as those used for the generated message decks data set. The
following is an example of the ITP0SGNP panel as it might look when generating
STL scripts.

ITP0SGNP WSim: Generate message decks from sorted trace data

Type information. Then Press Enter
More: +

Input Data Sets
Sorted trace ’USERID.SORTED.TRACE’

Tape: Serial numbers ,
File number . . (0-9999)
Label type . . (NL or SL)

Model script ’USERID.NETWORKS(MODEL)’
Control commands ’USERID.CONTROL(SGEN)’

Output Data Sets
Generated message decks ’USERID.MSGFILE’
Generated STL programs ’USERID.STLIN’
Updated networks ’USERID.TESTFILE’
Sequential output . . . ’USERID.SEQOUT’
Printer output ’USERID.SYSPRINT’

Command ===>
F1=Help F2=Split F3=Exit F4=Edit input F5=Refresh F6=Browse prt
F7=Bkwd F8=Fwd F9=Swap F10=Edit ctl F11=Save F12=Cancel

/***/
/* Workload Simulator (WSim) 5655-I39 */
/***/
/* SGEN CLIST */
/* Sample CLIST to execute ITPSGEN. */
/***/
FREE DDNAME(SYSPRINT RATEDD INITDD MSGDD SYSUT2 SYSUT3)
FREE DDNAME(MSGTXT STLTXT NTWRK SEQOUT TAPEIN CTLIN SYSIN)
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(RATEDD) DATASET(’WSIM.SITPRTBL’) SHR
ALLOC DDNAME(INITDD) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(MSGDD) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(SYSUT2) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(SYSUT3) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(MSGTXT) DATASET(’WSIM.MSGFILE’) SHR
ALLOC DDNAME(STLTXT) DATASET(’WSIM.STLIN’) SHR
ALLOC DDNAME(NTWRK) DATASET(’WSIM.TESTFILE’) SHR
ALLOC DDNAME(SEQOUT) DATASET(’WSIM.SEQOUT’) SHR
ALLOC DDNAME(TAPEIN) DATASET(’ITPSGEN.TAPEIN’) SHR
ALLOC DDNAME(CTLIN) DATASET(’ITPSGEN.CTLIN’) SHR
ALLOC DDNAME(SYSIN) DATASET(’ITPSGEN.SYSIN’) SHR
CALL ’WSIM.SITPLOAD(ITPSGEN)’ ’CTL’
FREE DDNAME(SYSPRINT RATEDD INITDD MSGDD SYSUT2 SYSUT3)
FREE DDNAME(MSGTXT STLTXT NTWRK SEQOUT TAPEIN CTLIN SYSIN)

Figure 54. A CLIST modified to enable ITPSGEN to generate CPI-C scripts

Chapter 18. Using the Script Generator Utility 261

ITPSGEN control commands
This section describes new ITPSGEN control commands specifically for CPI-C
scripts.

All of the current control commands are recognized by the CPI-C script generator.
However, the RESP and SSCP commands are ignored during generation of CPI-C
scripts.

The DELAY command is handled differently when generating CPI-C scripts.
Delays are calculated from the time of the last receive record or from the time of
the last transmit record, whichever is the most recent. A delay is calculated for all
CPI-C verbs that are WSim delimiters (that is, verbs that cause a transmit to
VTAM). These verbs are: CMALLC, CMCFM, CMCFMD, CMDEAL, CMFLUS,
CMPTR, CMRTS, CMSEND, and CMSERR. The delay is generated in the CPI-C
script as an STL SUSPEND statement, and is inserted at the point where the delay
was encountered in the trace. When running the generated script, the delays
should approximate what actually transpired when the trace was captured.
However, no attempt is made to control any delays in responses from the partner.
In addition to the SUSPEND statement, a DELAY(0) statement is generated prior to
each CPI-C delimiter. This overrides any default delay that may have been set in
the network definition, thus preventing a cumulative delay effect.

COMP and NOCOMP commands

COMP

COMP {ALL [n] [WARNING | ERROR]}
{DATA [n] [WARNING | ERROR]}
{CONV [WARNING | ERROR]}

Default:COMP ALL 32767 ERROR

This command specifies the level of comparison to be performed when comparing
the actual send data length, and the actual received data, status, and conversation
characteristics to the trace file data. Received status comparisons controlled by this
command are: send received, confirm received, and conversation deallocated.
Conversation characteristic comparisons controlled by this command are: partner
LU name, mode name, conversation type, and conversation sync-level. This
command also controls whether conversation failures are handled as errors or
warnings. Warning conditions result in a message being issued, and the script
continues to process. Error conditions result in a message being issued, however,
the script is terminated.

COMP ALL[n][WARNING | ERROR]
The ALL operand compares send data length, received data, and received
status, as well as conversation characteristics. Use n to specify the amount
of received data to be compared. The range for n is 0 to 32767. The default
value is 32767. When this control command is specified, the actual send
data length is compared to the send data length from the trace. Also, the
first n bytes of actual received data from each receive verb will be
compared against the data from the trace. The actual received data length
is also compared to the received data length from the trace. However, if n
is less than the received data length from the trace, the comparison will
only ensure that the actual received data is at least as large as n. If warning

262 WSim V1R1 Utilities Guide

is specified, the generated script handles conversation failures by issuing a
message and continuing with the next statement in the script. If error is
specified, the generated script handles conversation failures by issuing a
message and terminating the script.

COMP DATA[n][WARNING | ERROR]
The DATA operand compares only the received data to the trace file data.
Use n to specify the amount of received data to be compared. The range
for n is 0 to 32767. The default value is 32767. When this control command
is specified, the first n bytes of actual received data from each receive verb
will be compared against the data from the trace. The actual received data
length also will be compared to the received data length from the trace.
However, if n is less than the received data length from the trace, the
comparison will only ensure that the actual received data is at least as
large as n. If warning is specified, the generated script handles conversation
failures by issuing a message and continuing with the next statement in
the script. If error is specified, the generated script handles conversation
failures by issuing a message and terminating the script.

COMP CONV[WARNING | ERROR]
The CONV operand compares only the conversation characteristics and
received status to the trace file data. If warning is specified, the generated
script handles conversation failures by issuing a message and continuing
with the next statement in the script. If error is specified, the generated
script handles conversation failures by issuing a message and terminating
the script.

NOCOMP

NOCOMP The NOCOMP control command specifies that no comparisons are to
be performed on send data length, received data, status, or conversation
characteristics.

FIELD and NOFIELD commands

FIELD

This command is used to control the creation of composite fields. Composite fields
can be optionally generated for the attach request (FMH-5) extension and the send
and receive buffers. Creating composite fields refers to mapping the variable length
fields in the FMH-5 extension and the send and receive buffers into component
pieces and creating STL variables to represent each component. Components that
are length fields are scripted in such a way as to support dynamic recalculation
when data field components are modified. For example, you can change the fully
qualified LU name in the FMH-5 extension by changing the STL variable that
represents this value. The FMH-5 length fields affected by the change are
automatically recalculated by the script.

FIELD specifies that the variable length fields in the FMH-5 extension and the send
and receive buffers should be mapped into composite fields in the generated script.
FIELD is the default value.

Chapter 18. Using the Script Generator Utility 263

NOFIELD

NOFIELD specifies that the variable length fields in the FMH-5 extension and the
send and receive buffers should not be mapped into composite fields in the
generated script.

NOFIELD Example

The following is an example of the generated script for an FMH-5 extension, send
buffer, and receive buffer. This example was generated without composite fields.
FMH5_extension = ,
/* 0000 */ ’100702C4E2E4E2C5D90701C4E2E4E2C5D91A11C3E6E2D5C5E3’x||,
/* EBCDIC: . . . D S U S E R . . D S U S E R . . C W S N E T */
/* 0019 */ ’C3C14BC3E6F9F0F0C5F4C9AE08BF98C643000108B619DF7307’x||,
/* EBCDIC: C A . C W 9 0 0 E 4 I . . . q F */
/* 0032 */ ’20E813’x
/* EBCDIC: . Y . */
FMH5_extension_length = length(FMH5_extension)

send_buffer = ,
/* 0000 */ ’001A12210016FF000901E3C5E2E3F1F1C10902C2E4C4F3C2E4’x||,
/* EBCDIC: T E S T 1 1 A . . B U D 3 B U */
/* 0019 */ ’C4’x
/* EBCDIC: D */
send_length = length(send_buffer)
CMSEND(conversation_ID,send_buffer,send_length,,

request_to_send_received,return_code)

expected_receive_buffer = ,
/* 0000 */ ’002D12210029FF020300000A0207CD01070F3A29040A0307CC’x||,
/* EBCDIC: . */
/* 0019 */ ’0C171630223D0A0407CD05040000000004050000’x
/* EBCDIC: . */

FIELD Example

The following is an example of the generated script for an FMH-5 extension, send
buffer, and receive buffer. This example was generated with composite fields.
/* Create FMH-5 extension */
/* Note: If any data field in the FMH-5 extension is modified, all */
/* affected length fields will be dynamically recalculated. */

/* Build access security information */
fm5asipr = ’00’x /* Profile field constant */
fm5asipw = ’01’x /* Password field constant */
fm5asiid = ’02’x /* User ID field constant */
fm5asty1 = fm5asiid /* User ID security subfield */
fm5asda1 = ’C4E2E4E2C5D9’x /* Security subfield data */
/* EBCDIC: D S U S E R */
fm5asll1 = , /* Security subfield length */

hex(length(fm5asty1)+length(fm5asda1))
fm5asi1 = , /* Composite security subfield */

fm5asll1||fm5asty1||fm5asda1
fm5asty2 = fm5asipw /* Password security subfield */
fm5asda2 = ’C4E2E4E2C5D9’x /* Security subfield data */
/* EBCDIC: D S U S E R */
fm5asll2 = , /* Security subfield length */

hex(length(fm5asty2)+length(fm5asda2))
fm5asi2 = , /* Composite security subfield */

fm5asll2||fm5asty2||fm5asda2

264 WSim V1R1 Utilities Guide

fm5accse = fm5asi1||fm5asi2
fm5lnasi = hex(length(fm5accse)) /* Access Security Info length */
fm5asi = fm5lnasi||fm5accse /* Composite Access Security Info */

/* Build logical unit of work fields */
fm5fqnam = , /* Fully Qualified Name */
/* 0000 */ ’C3E6E2D5C5E3C3C14BC3E6F9F0F0C5F4C9’x
/* EBCDIC: C W S N E T C A . C W 9 0 0 E 4 I */
fm5lnfqn = hex(length(fm5fqnam)) /* Fully Qualified Name length */
fm5luwi = fm5lnfqn||fm5fqnam /* Composite LUOW ID */
fm5luwin = ’AE08BF98C643’x /* LUOW Instance Number */
/* EBCDIC: . . . q F . */

fm5luwsn = ’0001’x /* LUOW Sequence Number */
/* EBCDIC: . . */
fm5luow2 = fm5luwin||fm5luwsn /* Composite LUOW instance/seq */
fm5lnluw = , /* Logical Unit of Work length */

hex(length(fm5lnfqn)+length(fm5fqnam)+length(fm5luow2))
fm5luow1 = fm5lnluw||fm5luwi /* Composite Logical Unit of Work */

/* Build conversation correlator */
fm5ccs = ’B619DF730720E813’x /* Conversation Correlator data */
/* EBCDIC: Y . */
fm5lnccs = hex(length(fm5ccs)) /* Conversation Correlator length */
fm5cvcor = fm5lnccs||fm5ccs /* Composite Conv Correlator */

FMH5_Extension = fm5asi||fm5luow1||fm5luow2||fm5cvcor
/* 0000 ’100702C4E2E4E2C5D90701C4E2E4E2C5D91A11C3E6E2D5C5E3’x||, */
/* EBCDIC: . . . D S U S E R . . D S U S E R . . C W S N E T */
/* 0019 ’C3C14BC3E6F9F0F0C5F4C9AE08BF98C643000108B619DF7307’x||, */
/* EBCDIC: C A . C W 9 0 0 E 4 I . . . q F */
/* 0032 ’20E813’x */
/* EBCDIC: . Y . */
FMH5_extension_length = length(FMH5_extension)

/* Note: If the senddata field is modified, all affected length */
/* fields will be dynamically recalculated. */
sendid = ’1221’x /* Probable ID field */
/* EBCDIC: . . */
senddata = ,
/* 0000 */ ’0016FF000901E3C5E2E3F1F1C10902C2E4C4F3C2E4C4’x
/* EBCDIC: T E S T 1 1 A . . B U D 3 B U D */
sendll = hex(length(sendid)+length(senddata)+2,2)
send_buffer = sendll||sendid||senddata /* Send buffer data */
send_length = length(send_buffer)
CMSEND(conversation_ID,send_buffer,send_length,,

request_to_send_received,return_code)

/* Note: If the expected_receive_data field is modified, all */
/* affected length fields will be dynamically recalculated. */
expected_receive_id = ’1221’x /* Probable ID field */
/* EBCDIC: . . */
expected_receive_data = ,
/* 0000 */ ’0029FF020300000A0207CD01070F3A29040A0307CC0C17163022’x||,
/* EBCDIC: . */
/* 001A */ ’3D0A0407CD05040000000004050000’x
/* EBCDIC: */
expected_receive_ll = , /* Expected receive buffer length */

hex(length(expected_receive_id)+length(expected_receive_data)+2,2)
expected_receive_buffer = , /* Expected receive buffer data */

expected_receive_ll||expected_receive_id||expected_receive_data

HEXON and NOHEXON commands

HEXON

Chapter 18. Using the Script Generator Utility 265

This command is used to force certain data buffers to be generated in displayable
hexadecimal form if they exceed a specified length threshold. The buffers
controlled by this command are: send data receive comparison data error log data and
FMH-5 extension data. Optionally, the ASCII and/or EBCDIC translations of the
displayable hexadecimal data can be echoed in the form of STL comments. This
control command can be useful to facilitate the analysis of the data buffers in the
generated script when viewing them in a printout or on a video display screen.
Also, if long ASCII data streams are produced in the script, this command can be
used to avoid the generation of excessively complex STL statements that exceed the
capacity of the STL Translator.

HEXON ALL[ASCII │ EBCDIC │ BOTH]
The ALL operand specifies that all send data receive comparison data, error log
data and FMH-5 extension data will be generated in displayable
hexadecimal. You may optionally use ASCII , EBCDIC, or BOTH to specify
that the data will be followed with STL comments that echo the data in
ASCII, EBCDIC, or both.

HEXON n [ASCII │ EBCDIC │ BOTH]
The n operand specifies that all send data, receive comparison data, error log
data and FMH-5 extension data should be generated in displayable
hexadecimal if the data length is n bytes or more. Data streams less than n
bytes in length will be generated as a combination of displayable character
data and displayable hexadecimal as required for effective display of the
data on a video screen. The value for n can range from 1 to 32767. You
may optionally use ASCII, EBCDIC, or BOTH to specify that for data
streams greater than n bytes in length, the data will be followed with STL
comments that echo the data in ASCII, EBCDIC, or both.

NOHEXON

NOHEXON NOHEXON is the default for this control command. The NOHEXON
command generates all send data, receive comparison data, error log data and FMH-5
extension data as a combination of displayable character data and displayable
hexadecimal as required for effective display of the data on a video screen.

SENDL and NOSENDL commands

SEND

SENDL [WARNING | ERROR]

Default:SENDL WARNING

This command is used to determine whether a generated script should report
differences in send length compared to the trace file. Reported differences can be
treated as warning conditions or error conditions. If warning is specified, the
generated script handles length differences by issuing a message and continuing
with the next statement in the script. If error is specified, the generated script
handles length differences by issuing a message and terminating the script.

266 WSim V1R1 Utilities Guide

SENDL specifies that the generated script should report differences in the actual
send length compared to the trace file.

NOSENDL

NOSENDL specifies that the generated script should not report differences in the
actual send length compared to the trace file.

UCD and NOUCD commands

UCD

The UCD and NOUCD control commands are used to specify whether user control
data should be processed or ignored.

UCD is the default for this control command. The UCD control command specifies
that any user control data encountered in the trace should be processed as if they
were application data. Also either UCD=YES or UCD=BOTH is added to the TP
statement in the model network. If any true application data is encountered,
UCD=BOTH is added. Otherwise, UCD=YES is added. Message ITP868I is issued
to the SYSPRINT data set the first time user control data is encountered for a given
TP. Refer to WSim Messages and Codes for more information about the message.

NOUCD

This control command specifies that any user control data encountered in the trace
should be ignored. Also, UCD=NO is added to the TP statement in the model
network. Message ITP867I is issued to the SYSPRINT data set the first time user
control data is encountered for a given TP. Refer to WSim Messages and Codes for
more information about the message.

STL translation
CPI-C scripts are generated by ITPSGEN in STL. Before you can run a CPI-C script
generated by ITPSGEN, you must translate the STL into WSim scripting language
by following the steps given below:
1. The STL input data set must point to the data set produced by the script

generation SEQOUT DD. See “Sample JCL for STL translation.”
2. Add the CPICVARA and the CPICCON STL include files as members in your

STL includes data set (SYSLIB DD) if they are not already in this data set. Both
these files are members in the WSim SAMPLE data set. CPICVARA is a new
include file added as part of the CPI-C script generation support. See
“CPICVARA STL include file” on page 268.

Sample JCL for STL translation
You can use the following sample when writing your own JCL to execute the
WSim STL Translator.

Chapter 18. Using the Script Generator Utility 267

CPICVARA STL include file
Before translating the STL, add the following CPICVARA STL include file as a
member in your STL includes data set (SYSLIB DD) if it is not already a member
of that data set.

//STLJOB JOB
//***
//* Workload Simulator (WSim) 5655-I39 *
//***
//* STLJOB JCL *
//* Sample JCL to execute the WSim STL Translator (ITPSTL). *
//***
//STL EXEC PGM=ITPSTL,REGION=4096K
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//PARMDD DD DSN=WSIM.PARMDD,DISP=SHR
//RATEDD DD DSN=WSIM.SITPRTBL,DISP=SHR
//INITDD DD DSN=WSIM.TESTFILE,DISP=SHR
//SYSPRINT DD SYSOUT=A
//MSGDD DD DSN=WSIM.MSGFILE,DISP=SHR
//SEQOUT DD DSN=WSIM.STL.SEQOUT,DISP=SHR
//SYSLIB DD DSN=WSIM.STLIN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSIN DD DSN=WSIM.SEQOUT,DISP=SHR

Figure 55. Sample JCL to execute the WSim STL Translator

268 WSim V1R1 Utilities Guide

VTAM system definitions
Prior to running a WSim simulation using generated CPI-C scripts, make sure each
APPC LU to be simulated by WSim is defined to VTAM via APPL statements in
the VTAMLST data set. The definition must specify APPC=YES. Each APPC LU
must have a unique APPLID name. This is necessary since VTAM associates
conversations to an APPLID name and receives attach requests by this name,
rather than by the TP name.

/***/
/* STL variable allocations for CPI-C verb parameters & switches */
/***/
/* String parameters */
allocate conversation_ID ’1’ /* Conversation ID */
allocate mode_name ’2’ /* Mode name */
allocate partner_LU_name ’3’ /* Partner LU name */
allocate sym_dest_name ’4’ /* Symbolic dest name */
allocate TP_name ’5’ /* TP name */
allocate log_data ’6’ /* Log data */
allocate send_buffer ’7’ /* Send buffer */
allocate receive_buffer ’8’ /* Receive buffer */
allocate FMH5_extension ’9’ /* FMH-5 extension */
/***/
/* Integer parameters */
allocate conversation_state ’DC1’ /* Conversation state */
allocate conversation_type ’DC2’ /* Conversation type */
allocate data_received ’DC3’ /* Data received */
allocate deallocate_type ’DC4’ /* Deallocate type */
allocate error_direction ’DC5’ /* Error direction */
allocate fill ’DC6’ /* Fill value */
allocate log_data_length ’DC7’ /* Log data length */
allocate mode_name_length ’DC8’ /* Mode name length */
allocate partner_LU_name_length ’DC9’ /* Partner LU name length*/
allocate prepare_to_receive_type ’DC10’ /* Prepare to RCV type */
allocate receive_type ’DC11’ /* Receive type */
allocate received_length ’DC12’ /* Received length */
allocate request_to_send_received ’DC13’ /* Request-to-send rcvd */
allocate requested_length ’DC14’ /* Requested length */
allocate return_code ’DC15’ /* Return code */
allocate return_control ’DC16’ /* Return control */
allocate send_length ’DC17’ /* Send length */
allocate send_type ’DC18’ /* Send type */
allocate status_received ’DC19’ /* Status received */
allocate sync_level ’DC20’ /* Sync-level */
allocate TP_name_length ’DC21’ /* TP name length */
allocate FMH5_extension_length ’DC22’ /* FMH-5 extension length*/
/***/
/* Device switches */
allocate send_received ’SW1’ /* Send token received */
allocate confirm_received ’SW2’ /* Confirmation req rcvd */
allocate conversation_deallocated ’SW3’ /* Conv deallocated */
allocate conversation_error ’SW4’ /* Conversation error */
/***/

Figure 56. CPICVARA STL include file

Chapter 18. Using the Script Generator Utility 269

270 WSim V1R1 Utilities Guide

Chapter 19. 3270 password masking

Passwords are generally maintained on formatted 3270 screens in unprotected
non-display fields. While not visible, the passwords are sent in the clear to host
application programs. This enhancement will mask (encrypt or hide using
asterisks) potential passwords entered by users of the WSim data capture and
script generation utilities and mask their presence in generated WSim scripts,
simulation data views, and output reports.

Interactive Data Capture (IDC)
IDC is a VTAM application, which allows 3270 SNA session traffic to be captured
for WSim script generation using the log script generation utility ITPLSGEN.

The potential 3270 passwords are masked as follows.
v Transmit and receive data records logged with potential passwords will have all

the SNA RU data after the 3270 AID and cursor location bytes masked using
asterisks.

v Log Display records logged with potential passwords will be encrypted.

ITPLU2RF
ITPLU2RF reformats a VTAM buffer trace into a WSim log for WSim script
generation using the log script generation utility ITPLSGEN.

The potential 3270 passwords are masked as follows.
v Transmit data records logged with potential passwords will have all the SNA RU

data after the 3270 AID and cursor location bytes masked using asterisks.
v Log Display records logged with potential passwords will be encrypted.

ITPLSGEN
ITPLSGEN generates a WSim script from a WSim log data set created by IDC,
ITPLU2RF, or a WSim simulation run.

The potential 3270 passwords will be masked in the generated script using the
following STL code.
upnd = 'encrypted_potential_password_data'x
userexit('ITPUMNDX',upnd)

The ITPUMNDX message generation exit will ensure the simulated 3270 cursor is
in an unprotected non-display field large enough to hold the password and then
decrypt the encrypted potential password data into the simulated screen for
transmission to the host application program.

© Copyright IBM Corp. 1985, 2015 271

WSim simulator ITPENTER
The WSim simulator tokenizes the network definition and scripts into a main
storage performance format and executes the scripts to simulate one or more
terminals and their simulated operators.

The potential 3270 passwords are masked as follows.
v Transmit data records logged with potential passwords will have just the SNA

RU data containing potential 3270 passwords masked using asterisks.
v Log Display records with potential passwords in unprotected non-display fields

will be masked using asterisks.
v Display images and transmit data made available for monitoring using the

Display Monitor facility will be displayed with potential passwords masked
using asterisks.

Loglist utility ITPLL
The WSim loglist utility formats out the WSim log data set for post simulation
analysis of the simulation run.

The potential 3270 passwords are masked as follows.
v When Log Display records are processed with encrypted image data from the

IDC utility or ITPLU2RF, the potential 3270 passwords will be masked in the
output report using asterisks.

Compare utility ITPCOMP
The WSim compare utility compares Log Display records from IDC, ITPLU2RF, or
simulation log data sets.

The potential 3270 passwords are masked as follows.
v When Log Display records are processed with encrypted image data from the

IDC utility or ITPLU2RF, the potential 3270 passwords will be masked in the
image compare buffer using asterisks. Since the WSim simulator generates Log
Display records with the potential 3270 passwords also masked using asterisks,
all potential 3270 passwords will contain asterisks for the length captured or
entered by the simulation script.

ITPGNKYZ utility to generate encryption key/IV USERMOD
The ITPGNKYZ utility generates an SMP/E USERMOD to set a site unique
encryption key and initialization vector (IV) value. The following JCL is used to
execute the ITPGNKYZ utility. The IN and OUT DDs are for RECFM=FB,
LRECL=80 data sets.
//GNKEYZAP JOB
//STEP1 EXEC PGM=ITPGNKYZ
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//IN DD *
kykykykykykykykyiviviviviviviviv
/*
//OUT DD DSN=KEYIV.USERMOD,DISP=SHR

Where kykykykykykykyky is an eight-byte key value in hex and iviviviviviviviv is
an eight-byte IV value in hex, i.e. a total of thirty-two hex characters.

272 WSim V1R1 Utilities Guide

The following return codes are set by ITPGNKYZ.

0 OK

8 Invalid Key or IV Value

12 OPEN Error on Input File

16 READ Error on Input File

20 OPEN Error on Output File

24 WRITE Error on Output File

Chapter 19. 3270 password masking 273

274 WSim V1R1 Utilities Guide

Chapter 20. Work Station Trace Reformatter Utility

Work Station Trace Reformatter Utility (ITPWSTRF) is a REXX exec that reformats
OS/2 Communications Manager (CM/2) and IBM Communications Server LU 6.2
traces into TIR formatted records for processing by the WSim Script Generator
(ITPSGEN). The steps for using OS/2 Communications Manager (CM/2) and IBM
Communications Server traces as script generation source files are as follows:
1. Capture an LU 6.2 trace using either the OS/2 Communications Manager

(CM/2) trace facility or the IBM Communications Server trace facility.
2. Upload the trace output file to your host system as an EBCDIC TEXT file.
3. Run the Work Station Trace Reformatter utility (ITPWSTRF) against the

uploaded trace file.
4. Sort the ITPWSTRF output file in ascending order by resource name, session

number, date, and time fields.
5. Run the Script Generator utility (ITPSGEN) against the sorted file.

Trace output format requirements
ITPWSTRF can only be used to reformat trace output produced by the OS/2
Communications Manager (CM/2) or IBM Communications Server trace facilities.
Examples of the format required for the trace output files are provided below.

Note: ITPWSTRF will only process trace records in the formats listed below. The
trace record formats are subject to change as the OS/2 Communications Manager
(CM/2) and IBM Communications Server products evolve over time.

If the Work Station trace does not match one of the following formats, such that
ITPWSTRF cannot be used, you should use a VTAM buffer trace and ITPVTBRF to
provide input for CPI-C script generation.

Example: CM/2 trace record

Executing ITPWSTRF under MVS
To execute ITPWSTRF under MVS, specify the following:
ITPWSTRF input_file output_file [INVERT]

Where:
v input_file is the input file name
v output_file is the output file name
v INVERT causes the reformatter to switch the origin and destination LU names

"TRACE COPIED 06/30/2002 13:09:05.06""
<==SEND===== IBMTRNET #00 40003745100204 0C400774E27E37BF 13:08:08.16

#:009F TH:2F0001020001 RH:6B8100
31001307 B0B05033 01808686 80010602 <1.....P3..ff....>
00000000 0000001C 23000010 E4E2C9C2 <........#...USIB>

===RECV====> IBMTRNET #00 40003745100204 0C400774E27E37BF 13:08:10.44
#:0068 TH:2F0002010001 RH

00000000 00000010 23000000 25000902 <........#...%...>

Figure 57. Example: CM/2 trace record

© Copyright IBM Corp. 1985, 2015 275

Notes:

v The input_file and output_file parameters are required.
v The input and output files must be different physical files.
v If the file name is not specified in quotes, the TSO userid is added as the

high-level qualifier.

276 WSim V1R1 Utilities Guide

Chapter 21. Generating STL from TCP/IP traces

You can generate STL programs from a TCP/IP trace with the TCP/IP Trace STL
Generation Utility (ITPIPGEN). ITPIPGEN reads a data set that contains TCP/IP
trace records and processes those records. The records contain HTTP messages that
are exchanged between a server and client. An STL program is created, which
replicates the communication that occurred between the server and client.

ITPIPGEN can also generate a network definition that can be used to run message
deck. You can create the message deck from the generated STL program.

The generated STL program imitates the processing that is performed by the client.
The program sends the client messages that are obtained from the trace to the
server port and waits to receive a message from the server.

The program can include logic to compare the HTTP header status line in the
message that is returned from the server with the corresponding message from the
trace. You can invoke the logic by specifying the verification option. If the
messages match, the transaction within the test case is considered successful. The
following processes continue until all the client and server messages from the trace
are processed:
v Sending a client message to the server.
v Receiving the server response message.
v Comparing the server response message with the corresponding server message

from the trace, if the verification option is specified.

Setting up ITPIPGEN

To run ITPIPGEN under MVS, you need to allocate or use an existing allocation for
the following data sets:

STL programs
This data set contains the generated STL programs. This data set must be
partitioned and allocated as fixed block, variable block, or variable with a
record length of at least 71 bytes and a block size compatible with the
record length. The space that is needed for this data set depends on the
number of user actions and amount of data that is generated in the
program. Initially, allocate at least five cylinders of 3390 DASD or
equivalent space for this data set. This data set must be cataloged.

Network definitions
If required, ITPIPGEN can create a network definition to run the message
deck from the generated STL program. This data set must be partitioned
and its block size must be a multiple of 80. This data set is optional.

ITPIPGEN commands
This data set contains the ITPIPGEN commands that are used to control
the script generation process. You can allocate this data set as a fixed block
data set with a record length of 80 bytes and a block size compatible with
the record length. The space that is needed for this data set depends on the
number of ITPIPGEN commands that are entered.

© Copyright IBM Corp. 1985, 2015 277

|

|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

The input to ITPIPGEN is a sequential data set that contains TCP/IP trace records.
You can create this data set by using the WSim TCP/IP Trace Utility program
ITPIPTRX.

Running ITPIPGEN

When you set up the data sets, you can then start the ITPIPGEN utility. To do this,
you need to define the ITPIPGEN job stream and specify the ITPIPGEN execution
parameters. You can also run ITPIPGEN by using the WSim/ISPF Interface.

Using JCL to run ITPIPGEN

The following example shows the JCL to run ITPIPGEN as an MVS batch job.
//ITPIPGEN JOB
//ITPIPGEN EXEC PGM=ITPIPGEN
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD DSN=WSIM.ITPIPGEN.COMMANDS,DISP=SHR

Using a CLIST to run ITPIPGEN

The following example shows the CLIST commands to run ITPIPGEN under TSO.
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(WSTSKLIB) DSNAME(’WSIM.SITPLOAD’) SHR
ALLOC DDNAME(SYSIN) DSNAME(’WSIM.ITPIPGEN.COMMANDS’) SHR
CALL ’WSIM.SITPLOAD(ITPIPGEN)’
FREE DDNAME(SYSPRINT WSTSKLIB SYSIN)

Running ITPLSGEN from the WSim/ISPF Interface

To invoke ITPIPGEN from the WSim/ISPF Interface, follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method that you

use to do this depends on how the WSim/ISPF Interface application is installed
at your site. If you are not sure how to do this, see your system programmer
for assistance.

2. Select option 5 from the WSim/ISPF Interface main panel and press Enter. The
Generate Message Decks and STL Programs panel is displayed.

3. Select option 4 from this panel and press Enter. The Generate an STL Program
from a TCP/IP Trace panel is displayed.

Note: You can also type “TCPSGEN” on the WSim/ISPF Interface main panel
command line and press Enter to display this panel.

4. Fill in the appropriate fields on this panel and press Enter to run ITPIPGEN.

For more information on the WSim/ISPF Interface, see Chapter 2, “Running WSim
with the WSim/ISPF Interface,” on page 5

Specifying execution parameters

You can specify the following execution parameters for ITPIPGEN:

PRTLNCNT=nnn
Specifies the maximum number of lines to be printed on a page of output
before a new page starts. The value for nnn is an integer from 35 to 255. The
default value for nnn is 60.

278 WSim V1R1 Utilities Guide

|
|
|

|
|

|
|
|

|

|

|
|
|
|
|

|

|

|
|
|
|
|

|

|

|
|
|
|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|

ROUTCDE=(n,n,...)
Specifies the system message routing codes to be used when ITPIPGEN writes
messages to the operator. Each n is a system routing code that defines a
console destination for every WTO and WTOR message that ITPLSGEN writes.
n can be an integer from 1 to 16. The default value for the ROUTCDE
parameter is 8.

Using control commands

You can enter control commands to complete the following tasks:
v Specify the IP address of the client and the port number for the server
v Define the program name and STL member name
v Specify the input and output data set names
v Generate a network definition
v Start the utility
v End the utility

Note: You must enter the following input commands:
v IP
v PORT
v MSGTXT
v INPUT
v STLOUT
v RUN
v END

All other commands are optional.

Entering control commands

You can enter a control command in any position in the input record of the SYSIN
DD data set. These commands cannot extend past column 71 and cannot be
continued. Operands can be separated with only commas. Although you can
separate a command and its operand by more than one blank space, you must
enter at least one blank space between the command and the operand. You cannot
enter blank spaces between operands; operands that follow the space are
interpreted as comments. To enter a comment on a line with operands, insert at
least one space in between the operands and the comment.

You might also have comment lines. You can do this by entering an asterisk (*) in
the first column.

If you enter a command more than once within the same run, ITPIPGEN uses the
last valid one entered. You can enter multiple RUN commands in the SYSIN DD
data set or from the WSim operator console. Successful generation of STL
following a RUN command clears all the commands entered; a RUN command
that results in an error does not clear the commands.

All commands can be abbreviated to any shorter length. All of these commands,
except for NTWRK, can be shortened to one letter. The abbreviated command for
NTWRK is NT. The following examples are identical.

Chapter 21. Generating STL from TCP/IP traces 279

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

STLOUT ’WSIM.TEST.STL’
S ’WSIM.TEST.STL’
STL ’WSIM.TEST.STL’

Specifying the client IP address

You can specify the IP address of the client by using the IP command. This
command is shown below.

IP ipaddr

ITPIPGEN uses the IP address that is specified with the IP command to search the
input TCP/IP trace data set for messages that are exchanged between the client IP
address and the server port. ipaddr must be a valid IPV4 or IPV6 address.

Specifying the server port

You specify the port number that is used by the server by using the PORT
command. This command is shown below.

PORT portnum

ITPIPGEN uses the port number that is specified with the PORT command to
search the input TCP/IP trace data set for messages that are exchanged between
the client IP address and the server port.

Defining the STL program name

You can define the name of the generated STL program with the MSGTXT
command. This command is shown below.

MSGTXT msgtxtid

msgtxtid must be 1 to 8 alphanumeric or special ($,@,_,?,#) characters, where the
first character is non-numeric.

The name cannot be an STL reserved word or begin with $INC, $LA, or $SET,
which are reserved labels in STL. Also, you cannot use the same name as the STL
program trace name.

Specifying input and output

You can specify the input and output data sets by using the INPUT, STLOUT, and
NETOUT commands.

To specify the input TCP/IP trace data set name, code the INPUT command. This
command is shown below.

INPUT dsname

dsname is the data set name of the TCP/IP trace data set. This name can be from 1
to 36 characters long and can be enclosed in single or double quotation marks. If
the data set name that you specify has embedded spaces in it, you must enclose
the name in quotation marks. When you use partitioned data sets under MVS,
specify the member name within parentheses after dsname.

280 WSim V1R1 Utilities Guide

|
|
|

|

|
|

|

|
|
|

|

|
|

|

|
|
|

|

|
|

|

|
|

|
|
|

|

|
|

|
|

|

|
|
|
|
|

To specify the output STL data set name, code the STLOUT command. This
command is shown below.

STLOUT dsname

dsname is the data set name that contains the generated STL. This name can be
from 1 to 36 characters long and can be enclosed in single or double quotation
marks. If the data set name you specify has embedded spaces in it, you must
enclose the name in quotations. When you are using partitioned data sets under
MVS, the member name can optionally be specified within parentheses after
dsname. The default member name for output partitioned data set is the msgtxtid
that is specified on the MSGTXT command.

If you require a network definition to be generated, specify the NETOUT
command as shown below.

NETOUT dsname

dsname is the data set name that contains the generated network definition. This
name can be from 1 to 36 characters long and can be enclosed in single or double
quotation marks. If the data set name you specify has imbedded spaces in it, you
must enclose the name in quotation marks. When you use partitioned data sets
under MVS, the member name can optionally be specified within parentheses after
dsname. The default member name for output partitioned data set is the ntwrkid
that is specified on the NTWRK command or msgtxtid that is specified on the
MSGTXT command if the NTWRK command is not specified.

Defining the network name

If you request the generation of a network definition by using the NETOUT
command, you can use the NTWRK command to define the name of the network.
This command is shown below:

NTWRK ntname

ntname must be 1 to 8 alphanumeric or special ($,@,_,?,#) characters, where the first
character is non-numeric.

Verifying server responses

You can request that the generated STL includes logic to verify that the status line
in a response from the server at test execution matches the status line in the
corresponding message in the TCP/IP trace that is used to generate the STL. To do
this, use the VERIFY command that is shown below:

VERIFY

When you enter the VERIFY command, ITPIPGEN generates STL that contains
logic to check that the status line in a server response matches the corresponding
server message in the TCP/IP trace.

To generate STL without server response verification, use the NOVERIFY
command as shown below.

NOVERIFY

Chapter 21. Generating STL from TCP/IP traces 281

|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|

|
|
|
|

|

|
|
|

|
|

|

If you do not specify either the VERIFY or NOVERIFY command, ITPIPGEN
generates STL that includes logic to verify responses from the server.

Starting ITPIPGEN

When you finish entering your control commands, you then start the ITPIPGEN
utility with the RUN command. This command is shown below.

RUN

The RUN command specifies that all commands are entered and that script
generation is to begin. After script generation, ITPIPGEN resets everything to their
default values.

You can only enter RUN after you specify IP, PORT, MSGTXT, INPUT, and
OUTSTL for that run. If you enter RUN before you specify these commands,
ITPLSGEN does not process any of your commands. This lets you enter the
required commands without losing what you previously entered.

Ending ITPIPGEN

The last control command that you enter is the END command. This command is
shown below.

END

The END command tells ITPIPGEN to come to a normal completion. No further
processing occurs. Any commands that are entered after the last RUN command
are ignored.

282 WSim V1R1 Utilities Guide

|
|

|

|
|

|

|
|
|

|
|
|
|

|

|
|

|

|
|
|

Part 3. Appendixes

© Copyright IBM Corp. 1985, 2015 283

284 WSim V1R1 Utilities Guide

Notices

This information was developed for products and services that are offered in the
USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 1985, 2015 285

Trademarks and service marks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM CICS CUA
DB2 IMS™ MVS
MVS/ESA MVS/SP MVS/XA
OS/390® SAA Series/1
SP System/370 Systems Application Architecture®

VTAM

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

286 WSim V1R1 Utilities Guide

Glossary

This glossary includes terms and definitions from
the IBM Vocabulary for Data Processing,
Telecommunications, and Office Systems,
GC20-1699-6. Further definitions are from the
following volumes and reports. The symbols
follow the definitions to which they refer.
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are
identified by the symbol (A) after the
definition.

v Definitions from draft proposals and working
papers under development by the International
Standards Organization, Technical Committee
97, Subcommittee 1 are identified by the
symbol (TC97).

v Definitions from draft international standards,
draft proposals, and working papers in
development by the ISO/TC97/SC1 are
identified by the symbol (T), indicating final
agreement has not yet been reached among
participating members.

v Definitions from the CCITT Sixth Plenary
Assembly Orange Book, Terms and Definitions and
working documents published by the
International Consultative Committee on
Telegraph and Telephone of the International
Telecommunication Union, Geneva, 1980 are
identified by the symbol (CCITT/ITU).

v Definitions from published sections of the ISO
Vocabulary of Data Processing, developed by the
International Standards Organization, Technical
Committee 97, Subcommittee 1 and from
published sections of the ISO Vocabulary of
Office Machines, developed by subcommittees of
ISO Technical Committee 95, are indicated by
the symbol (ISO).

A

AID Attention identifier.

API Application program interface.

application program interface (API)
(1) The formally defined programming
language interface between an IBM

system control program or licensed
program and its user. (2) The interface
through which an application program
interacts with an access method. In
VTAM, it is the language structure used
in control blocks so that application
programs can reference them and be
identified to VTAM.

attention identifier (AID)
A code that the terminal sends in the
inbound data stream to identify the
operator action or structured field
function that caused the data stream to be
sent to the application program. An AID
is always sent as the first byte of the
inbound data stream. Structured fields in
the data stream may also contain an AID.

available
In VTAM, pertaining to a logical unit that
is active, connected, enabled, and not at
its session limit.

B

basic transmission unit (BTU)
In SNA, the unit of data and control
information passed between path control
components. A BTU can consist of one or
more path information units (PIUs).

bind In SNA, a request to activate a session
between two logical units (LUs).

BTU Basic transmission unit.

C

chain A group of logically linked records, for
example, an SNA message.

character set
(1) A defined collection of characters in a
loadable or nonloadable set selected by
means of a local character set identifier.
(2) An attribute type in the extended field
and character attributes. (3) An attribute
passed between session partners in the
Start Field Extended, Modify Field, and
Set Attribute orders.

Common Programming Interface for
Communications (CPI-C)

In WSim, an application programming

© Copyright IBM Corp. 1985, 2015 287

interface (API) used to perform
program-to-program communications
using LU type 6.2 communication
protocols. An evolving application
programming interface (API), embracing
functions to meet the growing demands
from different application environments
and to achieve openness as an industry
standard for communications
programming. CPI-C provides access to
interprogram services such as (a) sending
and receiving data, (b) synchronizing
processing between programs, and (c)
notifying a partner of errors in the
communication.

CPI-C Common programming interface for
communications.

D

data flow control (DFC)
In SNA, a request/response unit (RU)
category used for requests and responses
exchanged between the data flow control
layer in one half-session and the data
flow control layer in the session partner.

data set
The major unit of data storage and
retrieval, consisting of a collection of data
in one of several prescribed arrangements
and described by control information to
which the system has access.

data set members
Members of partitioned data sets that are
individually named elements of a larger
file that can be retrieved by name.

DBCS Double-byte character set.

ddname
Data definition name.

duplex
In data communication, pertaining to a
simultaneous two-way independent
transmission in both directions.
Synonymous with full duplex. (A)
Contrast with half duplex.

E

EBCDIC
Extended binary-coded decimal
interchange code.

end bracket (EB)
In SNA, the value (binary 1) of the end

bracket indicator in the request header
(RH) of the first request of the last chain
of a bracket; the value denotes the end of
the bracket.

end-of-transmission character (EOT)
The specific character, or sequence of
characters, that indicates no more data.

EOT End-of-transmission character.

event (1) An occurrence of significance to a task;
typically, the completion of an
asynchronous operation, such as an
input/output operation. (2) In WSim, a
named indicator/flag which can be used
for communications among terminal
scripts.

extended binary-coded decimal interchange code
(EBCDIC)

A coded character set of 256 8-bit
characters.

extended field attribute
Additional field definition to the field
attribute that controls defining additional
properties such as color, highlighting,
character set, and field validation. The
extended field attribute is altered by
information passed in the Start Field
Extended and Modify Field orders.

F

facility
(1) An operational capability, or the
means for providing such a capability. (T)
(2) A service provided by an operating
system for a particular purpose; for
example, the checkpoint/restart facility.

FID SNA format identification.

File Transfer Protocol (FTP)
In the Internet suite of protocols, an
application layer protocol that uses TCP
and Telnet services to transfer bulk-data
files between machines or hosts.

FM Function management.

format identification (FID) field
In SNA, a field in each transmission
header (TH) that indicates the format of
the TH; that is, the presence or absence of
certain fields. TH formats differ in
accordance with the types of nodes
between which they pass.

FTP File transfer protocol.

288 WSim V1R1 Utilities Guide

H

half duplex
In data communication, pertaining to an
alternate, one way at a time, independent
transmission(A); Contrast with duplex.

I

I/O Input/output.

IMS/VS
Information Management System/Virtual
Storage.

Information Management System/Virtual
Storage (IMS/VS)

A general purpose system that enhances
the capabilities of OS/VS for batch
processing and telecommunication and
allows users to access a
computer-maintained data base through
remote terminals.

input/output (I/O)
(1) Pertaining to a device whose parts can
perform an input process and an output
process at the same time. (2) Pertaining to
a functional unit or channel involved in
an input process, output process, or both,
concurrently or not, and to the data
involved in such a process. Note: The
phrase input/output may be used in place of
input/output data, input/output signals, and
input/output process when such a usage is
clear in context. (3) Pertaining to input,
output, or both.

Interactive System Productivity Facility (ISPF)
An IBM licensed program that serves as a
full-screen editor and dialogue manager.
Used for writing application programs, it
provides a means of generating standard
screen panels and interactive dialogues
between the application programmer and
terminal user.

intermessage delay
The elapsed time between receipt of a
system response at a terminal and the
time when a new transaction is entered.
Synonymous with think time.

IOB Input/output control block.

ISPF Interactive System Productivity Facility.

J

JCL Job control language.

job control language (JCL)
A problem-oriented language designed to
express statements in a job that are used
to identify the job or describe its
requirements to an operating system. (A)

L

Log Compare Utility
A utility that enables WSim to compare
3270 display records from two log data
sets and report the differences.

logic test
In WSim, a conditional test on an input or
output message, a counter, or other item
using the WSim IF statement. The IF
actions can be used to control the
message generation process.

logical unit (LU)
(1) A port through which a user gains
access to the services of a network. (2) In
SNA, a port through which an end user
accesses the SNA network and the
functions provided by system services
control points (SSCPs). An LU can
support at least two sessions—one with
an SSCP and one with another LU—and
may be capable of supporting many
sessions with other logical units.

Loglist Utility
A utility that enables WSim to produce a
formatted report of the log data set.

LU Logical unit.

M

MDT Modified data tag.

message generation
In WSim, the process of executing WSim
statements that generate messages from
the resources being simulated by WSim.

message generation statements
The collection of statements that define
the actions to be performed by WSim,
including message generation and logic
testing.

MF Modify field.

modified data tag (MDT)
(1) An indicator, associated with each
input or output/input field in a displayed
record, that is set ON when data are
keyed into the field. The modified data
tag is maintained by the display device

Glossary 289

and can be used by the program using
the file. (2) In 3270, a bit in each input
field that, when set, causes that field to be
transferred to the host system.

modify field (MF)
A 3270 data stream order that specifies
the field and extended field attributes to
be modified without having to respecify
all attributes of the field.

module
A program unit that is discrete and
identifiable with respect to compiling,
combining with other units, and loading;
for example, the input to, or output from,
an assembler, compiler, linkage editor, or
executive routine. (A)

MTRC
Message generation trace record.

Multiple Virtual Storage (MVS)
An IBM licensed program whose full
name is the Operating System/Virtual
Storage (OS/VS) with Multiple Virtual
Storage/System Product for System/370*.
It is a software operating system
controlling the execution of programs.

MVS Multiple Virtual Storage.

N

NCB Network control block.

NetView® Performance Monitor (NPM)
An IBM licensed program that collects,
monitors, analyzes, and displays data
relevant to the performance of a VTAM
telecommunication network. It runs as an
online VTAM application program.

network control (NC)
In SNA, an RU category used for requests
and responses exchanged for such
purposes as activating and deactivating
explicit and virtual routes and sending
load modules to adjacent peripheral
nodes.

network control block (NCB)
A WSim control block containing
information about simulated networks.

network definition statements
A collection of statements that define the
network configuration WSim uses when
processing the message generation source
statements.

node (1) In SNA, an endpoint of a link or
junction common to two or more links in
a network. Nodes can be distributed to
host processors, communication
controllers, cluster controllers, or
terminals. Nodes can vary in routing and
other functional capabilities. (2) In VTAM,
a point in a network defined by a
symbolic name.

O

OEF Origin element field.

operating system (OS)
Software that controls the execution of
programs. An operating system may
provide services such as resource
allocation, scheduling, input/output
control, and data management. Note:
Although operating systems are
predominantly software, partial or complete
hardware implementations are possible. (A)

origin element field (OEF)
In SNA, a field in an FID4 transmission
header that contains an element address,
which combined with the subarea address
in the origin subarea field (OSAF), gives
the complete network address of the
originating network addressable unit
(NAU).

OS Operating system.

P

PA Program attention.

partitioned data set (PDS)
A data set in direct access storage that is
divided into partitions, called members,
each of which can contain a program, part
of a program, or data.

path information unit (PIU)
In SNA, a message unit consisting of a
transmission header (TH) alone, or of a
TH followed by a basic information unit
(BIU) or a BIU segment.

PF Program function.

PIU Path information unit.

programmed symbols (PS)
In the 3270 Information Display System,
an optional feature that stores up to six
user-definable, program-loadable
character sets of 190 characters each in

290 WSim V1R1 Utilities Guide

terminal read/write storage for display or
printing by the terminal.

PS Programmed symbols.

R

record (1) A set of data treated as a unit (TC97);
for example, in stock control, each invoice
could constitute one record. (2) In VTAM,
the unit of data transmission for
record-mode. A record represents
whatever amount of data the transmitting
node chooses to send. (3) In Series/1*, a
portion of a data set accessed at the
logical level (GET/PUT).

request/response header (RH)
In SNA, control information preceding a
request/response unit (RU), that specifies
the type of RU (request unit or response
unit) and contains control information
associated with that RU.

request/response unit (RU)
In SNA, a generic term for a request unit
or a response unit.

request unit (RU)
(1) In SNA, a message unit that contains
control information, such as a request
code, or function management (FM)
headers, end-user data, or both. (2) In
DPCX, the smallest unit of data or control
information.

resource
(1) Any facility of the computing system
or operating system required by a job or
task, and including main storage,
input/output devices, the processing unit,
data sets, and control or processing
programs. (2) In the NetView program,
any hardware or software that provides
function to the network.

Response Time Utility
A utility that enables WSim to analyze
response times for activities on the log
data set.

response unit (RU)
In SNA, a message unit that
acknowledges a request unit; it may
contain prefix information received in a
request unit. If positive, the response unit
may contain additional information (such
as session parameters in response to

BIND session), or if negative, contains
sense data defining the exception
condition.

return code
A code used to influence the execution of
succeeding instructions. (A)

RH Request header or response header.

RU Request unit or response unit.

S

script See WSim script.

session control (SC)
In SNA, (1) One of the components of
transmission control. Session control is
used to purge data flowing in a session
after an unrecoverable error occurs, to
resynchronize the data flow after such an
error, and to perform cryptographic
verification. (2) A request unit (RU)
category used for requests and responses
exchanged between the session control
components of a session and for session
activation and deactivation requests and
responses.

SI Shift In. Used with DBCS. This is the
X'0F' character that ends DBCS data.

SNA Systems Network Architecture.

SO Shift Out. Used with DBCS. This is the
X'0E' character that begins DBCS data.

SS Start-stop.

STL Structured Translator Language.

STL Translator
In WSim, a utility that acts as the STL
translator and translates STL statements
into message generation source
statements.

Structured Translator Language (STL)
A set of conventions and rules for writing
syntactically allowable statements that
will create message generation source
statements.

Systems Network Architecture (SNA)
The description of the logical structure,
formats, protocols, and operational
sequences for transmitting information
units through and controlling the
configuration and operation of networks.

Glossary 291

T

TH Transmission header.

think time
The elapsed time between receipt of a
system response at a terminal and the
time when a new transaction is entered.
Synonym for intermessage delay.

time sharing option (TSO)
An optional configuration of the
operating system that provides
conversational time sharing from remote
stations in a network using VTAM.

TP Transaction program.

TPF Transmission priority field.

transaction program (TP)
In WSim, a transaction program is any
program that uses LU type 6.2
communication protocols to communicate
with another program. Transaction
programs are implemented in WSim
using the CPI-C application program
interface.

transmission group (TG)
In SNA, a group of links between
adjacent subarea nodes, appearing as a
single logical link for routing of messages.
A transmission group may consist of one
or more SDLC links (parallel links) or of a
single System/370 channel.

transmission header (TH)
In SNA, control information, optionally
followed by a basic information unit
(BIU) or a BIU segment, that is created
and used by path control to route
message units and to control their flow
within the network.

TSO Time sharing option.

TVT WSim vector table.

V

Virtual Telecommunications Access Method
(VTAM)

An IBM licensed program that controls
communication and the flow of data in an
SNA network. It provides single-domain,
multiple-domain, and interconnected
network capability.

VTAM
Virtual Telecommunications Access
Method.

W

WCC Write control character.

window
(1) In SNA, synonym for pacing group.
(2) On a visual display terminal, a small
amount of information in a framed-in
area on a panel that overlays part of the
panel. (3) In data communication, the
number of data packets a data terminal
equipment (DTE) or data
circuit-terminating equipment (DCE) can
send across a logical channel before
waiting for authorization to send another
data packet.

window size
The specified number of frames of
information that can be sent before
receiving an acknowledgment response.

Workload Simulator (WSim)
IBM program product to simulate
terminals and networks. It enables the
user to test system performance and
evaluate network design.

write control character (WCC)
(1) A control character that follows a write
command in the 3270 data stream and
provides control information for executing
display and printer functions. (2) A
character used in conjunction with a
write-type command to specify that a
particular operation, or combination of
operations, is to be performed at a
display station or printer.

write-to-operator (WTO)
An optional user-coded service that
enables the writing of a message to the
system console operator that informs the
operator of errors and unusual system
conditions that may need correcting.

write-to-operator-with-reply (WTOR)
An optional user-coded service whereby a
message may be written to the system
console operator informing him of errors
and unusual conditions that may need
correcting. The operator must key in a
response.

WSim Workload Simulator.

WSim network
The set of statements defining an entire
WSim network, including both the
network definition statements and the

292 WSim V1R1 Utilities Guide

message generation source statements.
Should not be confused with a packet
switching network.

WSim script
The set of statements defining an entire
WSim network, including both the
network definition statements and the
message generation source statements.

WTO Write-to-operator.

WTOR
Write-to-operator-with-reply.

X

XMIT Transmit.

Glossary 293

294 WSim V1R1 Utilities Guide

Bibliography

The following manuals provide additional information about the definition and
operation of networks simulated by WSim:

WSim library
WSim User's Guide, SC31-8948

WSim Messages and Codes, SC31-8951

Creating WSim Scripts, SC31-8945

WSim Script Guide and Reference, SC31-8946

WSim Utilities Guide, SC31-8947

WSim User Exits, SC31-8950

WSim Test Manager User's Guide and Reference, SC31-8949

Related publications
ACF/VTAM Programmer's Guide, SC23-0115

Systems Application Architecture Common Programming Interface Communications
Reference, SC26-4399-06

© Copyright IBM Corp. 1985, 2015 295

296 WSim V1R1 Utilities Guide

Index

Special characters
* (comment) command

Log Compare Utility 106
Loglist Utility 61
Response Time Utility 149

* (comment) command, ITPSGEN 247

Numerics
3270 functions with ITPECHO 152, 156

A
Active Command List 73
allocating data sets, ITPLSGEN 213
allocating IDC data sets 176
APPCLU command

Loglist Utility 47
Response Time Utility 130

APPLID parameter that identifies
ITPECHO 157

ATTRIBUTE command 100
automatic string function 154, 155

B
BIND image, ITPECHO 152
BTRANS command 115, 131, 134
BUFSIZE parameter 157

C
calculating response times 113, 115
capturing data with IDC

adding statements to the IDC
log 186

capturing session initiation 184
capturing session termination 190
changing escape keys 189
changing log data sets 188
controlling data capture 186
IDC Add Statements Panel 186, 187
IDC Change Escape Key Panel 189
IDC Change Log Data Sets Panel 188
IDC Escape Actions Panel 184
using escape actions 184

CGRAPH command 134
CHARATTR command 101
CHECKONLY command 101
clear function 155
CNSL command 48
commands, entering from the console

(ITPLSGEN) 219
commands, generating debugging

comments (ITPLSGEN) 219
comment (*) command

Log Compare Utility 106
Loglist Utility 61
Response Time Utility 149

comment (*) command, ITPSGEN 247
Common Programming Interface

Communications (CPI-C)
message logging 163, 166
trace records 28, 163

Compare List 74
Complete Records List 73
console, entering commands from

(ITPLSGEN) 219
control command categories

data type selection 46
general control 46
overall selection 46
primary resource selection 46
record selection 46
resource selection 46
secondary resource selection 46

control command coding conventions 45
counter tests 32
CPITRACE operand 28
CTRC command 48
Cumulative Response Time

Distribution 112
CURSOR command 103
cursor position tests 30

D
DATA command 49
data messages

logging 166
data tests 29
data type selection control

commands 46
DEBUG command, ITPLSGEN 219
debugging IDC problems

3270 log display (DSPY) records 206
analyzing the IDC log 206
analyzing the IDC trace 207
IDC restrictions 207
receive (RECV) records 206
transmit (XMIT) records 206

defining the message generation deck
name, ITPLSGEN 216

defining the STL program name,
ITPLSGEN 216

defining user delays, ITPLSGEN 218
DELAY command 242
DELAY command, ITPLSGEN 218
delays, defining user (ITPLSGEN) 218
delays, overriding user (ITPLSGEN) 218
DEV command 92
device, specifying (IPTLSGEN) 217
Differences Report 75
double-byte character set (DBCS)

BTRANS command (Response Time
Utility) 133

CHECKONLY command (Log
Compare Utility) 102

ETRANS command (Response Time
Utility) 135

double-byte character set (DBCS)
(continued)

EXCLUDE command (Log Compare
Utility) 93

Log Compare Utility 77
Loglist Utility 37
MASK command (Log Compare

Utility) 104
SELECT command (Log Compare

Utility) 96
START command (Log Compare

Utility) 97
SYNCPOINT command (Log Compare

Utility) 98
DSPLY command 50
DSPY records, understanding of 63

E
echo function, non-3270 device 156
Eligible Terminal Report (SNA 3270

Reformatter Utility) 224
END Command

ITPECHO 158
Log Compare Utility 103
Loglist Utility 50
Response Time Utility 134

END command, ITPLSGEN 220
ending ITPLSGEN 220
enter-echo function 153
entering commands from the console,

ITPLSGEN 219
ERRCOUNT command 92
establishing a session using IDC

IDC Main Panel 181
IDC Start Session Panel 182
logging on to an application 182
logging on to IDC 181

ETRANS command 115, 135, 137
event tests 30
EXCLUDE command 93
EXDEV command

Loglist Utility 51
execution parameters

ITPECHO 157
ITPIDC 179
ITPLSGEN 215
ITPLU2RF 223
ITPSGEN 240
Log Compare Utility 77
Loglist Utility 36
Preprocessor 19
Response Time Utility 119

EXIT command
Loglist Utility 51
Response Time Utility 137

EXTERM command
Loglist Utility 52
Response Time Utility 138

EXTP command 52

© Copyright IBM Corp. 1985, 2015 297

F
File Transfer Protocol (FTP) client

simulation
time stamping messages 165

FMTSNA command 53
functions, non-3270 156

G
general control commands 46
Generalized Trace Facility (GTF)

description 234
reformatting data from 235

GENERATE command, ITPLSGEN 218
generating a message generation deck,

ITPLSGEN 217
generating an STL program,

ITPLSGEN 217
generating changed data fields,

ITPLSGEN 218
generating debugging comments,

ITPLSGEN 219
generating scripts with IDC

adding panel verification logic 197
choosing the type of script 191
generating a message generation

deck 194
generating an STL program 191
generating user delays 202
IDC Generate Message Generation

Deck Panel 194
IDC Generate STL Program

Panel 191
introduction 191
sample message generation deck 196
sample message generation deck with

user delays 204
sample message generation deck with

verification logic 200
sample STL program 193
sample STL program with user

delays 203
sample STL program with verification

logic 198
generating scripts, ITPLSGEN 218
GRAPH command 139

H
HEADER command

Log Compare Utility 103
Loglist Utility 54
Response Time Utility 139

I
IDC Add STL Statements Panel 186, 187
IDC Change Escape Key Panel 189
IDC Change Log Data Set Panel 188
IDC data sets, allocating 176
IDC Escape Actions Panel 184
IDC examples

sample message generation deck 196
sample message generation deck with

user delays 204

IDC examples (continued)
sample message generation deck with

verification logic 200
sample network definition 209
sample STL program 193
sample STL program with user

delays 203
sample STL program with verification

logic 198
IDC Generate Message Generation Deck

Panel 194
IDC Generate STL Program Panel 191
IDC Main Panel 181
IDC restrictions 207
IDC Start Session Panel 182
IF statement, categories of 28
Ineligible Terminal Report (SNA 3270

Reformatter Utility) 226
INFO command 54
informational records 26
INPUT command, ITPLSGEN 216
input, specifying (ITPLSGEN) 216
installing ITPECHO 156
Interactive Data Capture (IDC)

capturing data
adding statements to the IDC

log 186
capturing session initiation 184
capturing session termination 190
changing escape keys 189
changing log data sets 188
controlling data capture 186
IDC Add Statements Panel 186,

187
IDC Change Escape Key

Panel 189
IDC Change Log Data Sets

Panel 188
IDC Escape Actions Panel 184
using escape actions 184

creating network definitions
controlling script execution

flow 209, 210
synchronizing multiple

scripts 210
debugging problems

3270 log display (DSPY)
records 206

analyzing the IDC log 206
analyzing the IDC trace 207
IDC restrictions 207
overview 206
receive (RECV) records 206
transmit (XMIT) records 206

description 175
establishing a session

IDC Main Panel 181
IDC Start Session Panel 182
introduction 206
logging on to an application 182
logging on to IDC 181

generating scripts
adding panel verification

logic 197
choosing the type of script 191
generating a message generation

deck 194

Interactive Data Capture (IDC)
(continued)

generating scripts (continued)
generating an STL program 191
generating scripts IDC Generate

Message Generation Deck
Panel 194

generating user delays 202
IDC Generate Message Generation

Deck Panel 194
IDC Generate STL Program

Panel 191
sample message generation

deck 196
sample message generation deck

with user delays 204
sample message generation deck

with verification logic 200
sample STL program 193
sample STL program with user

delays 203
sample STL program with

verification logic 198
modifying scripts 205
running WSim 211
setting up IDC

allocating data sets 176
defining IDC to VTAM 176

starting IDC
defining the job stream 178
running IDC as a batch job 178
running IDC as a started

procedure 178
running IDC from a CLIST 179
running IDC from the WSim/ISPF

Interface 178
specifying execution

parameters 179
stopping ITPIDC 190
understanding return codes 211
using help 206

ITPECHO
3270 functions, list of 152
APPLID parameter 157
automatic string function 154, 155
BIND 152
BUFSIZE parameter 157
changing parameters 157
clear function 155
description of 151
END command 158
enter-echo function 153
execution parameters 157
functional specifications of 151, 156
initial screen 153
initiating sessions 159
installing 156
logging on 158
logoff function 155
non-3270 functions 156
NOSMSG command 158
NOTRACE command 158
operator commands 158
PASSWD parameter 157
programming requirements 151
repeat function 155
repetition function 154, 155

298 WSim V1R1 Utilities Guide

ITPECHO (continued)
return codes 159
running 157
SMSG command 158
SNA protocols 152
storage requirements 151
TRACE command 158
TSO CLIST, example of 158
VTAMAPPL statement, defining 156
WRITE command 154

ITPLSGEN
description 213
generating output 220
running ITPLSGEN

introduction 214
specifying execution

parameters 215
using CLISTs 214
using JCL 214
using the WSim/ISPF

Interface 214
setting up ITPLSGEN 213
using control commands

DEBUG command 219
DELAY command 218
END command 220
entering commands 215
GENERATE command 218
INPUT command 216
introduction 215
LU command 217
MSGTXT command 216
NODELAY command 218
NOVERIFY command 219
OUTPUT command 216
P command 219
RUN command 220
STL command 217
VERIFY command 219
WSim command 217

ITPLSGEN control commands
DEBUG command 219
DELAY command 218
END command 220
entering commands 215
GENERATE command 218
INPUT command 216
introduction 215
LU command 217
MSGTXT command 216
NODELAY command 218
NOVERIFY command 219
OUTPUT command 216
P command 219
RUN command 220
STL command 217
VERIFY command 219
WSim command 217

ITPLU2RF
allocating data sets 222
description 221
planning to use 221
running

specifying execution
parameters 223

using CLISTs 222
using JCL 222

ITPLU2RF (continued)
running (continued)

using the WSim/ISPF
Interface 223

understanding output
Eligible Terminal Report 224
Ineligible Terminal Report 226
Summary Report 223

understanding restrictions 228
understanding return codes 229
using the WSim log data set

calculating response times 227
comparing log data sets 228
formatting 227
generating a WSim script 227
introduction 226

ITPSGEN
* (comment) command 247
control commands 242, 247
control input, example of 252
data set requirements 241
DELAY command 242
description 239
execution parameters 240
input network definitions 238
input tape, format of 234
JCL, example of 252
LIMIT command 243
LIST command 243
message generation decks 247
networks, updated 248
NODELAY command 242
NOLIMIT command 243
NOLIST command 243
NONTWRK command 244
NORESP command 245
NOSEQOUT command 245
NTWRK command 244
output, example of 252
output, printed 249
output, sequential 248
REPORT command 244
RESP command 245
return codes 251
running 240
SEQOUT command 245
terminal types supported 240
TIME command 246
WSim/ISPF Interface, running

from 253
ITPSYSIN

description of 22
JCL, example of 22
return codes 23
TSO CLIST, example of 23
WSim/ISPF Interface, invoking 22

ITPVTBRF
description 235
JCL, example of 236
return codes 237
WSim/ISPF Interface, running

from 236

L
LENGTH command 140
light pen 240

LIMIT command 243
LIST command 243
LISTX execution parameter 111
LOG command 54
Log Compare Utility

* (Comment) command 106
ATTRIBUTE command 100
CHARATTR command 101
CHECKONLY command 101
command syntax 91
CURSOR command 103
description of 63
DEV command 92
END command 103
ERRCOUNT command 92
EXCLUDE command 93
execution parameters 36, 77
HEADER command 103
JCL, example of 78
LU command 94
MASK command 103
MSGTXT command 95
NODE command 95
output, examples of 79, 89
output, list of 72
P command 105
REPORT command 105
return codes 89
RUN command 106
running 76
SELECT command 96
START command 97
synchronizing 70, 77
SYNCPOINT command 98
TCPIP command 99
TERM command 99
TSO CLIST, example of 79
UPPERCASE command 106
VTAMAPPL command 100
WSim/ISPF Interface, running

under 77
log data set

Loglist Utility 25
record types 35
records 25
Response Time Utility 107
types of records in 163

log display attribute table header 34
log record header 33
log records 27
Loglist Utility

* (comment) command 61
APPCLU command 47
CNSL command 48
command syntax 45
CTRC command 48
DATA command 49
description of 25
DEV command 49
DSPLY command 50
END command 50
EXDEV command 51
execution parameters 36
EXIT command 51
EXTERM command 52
EXTP command 52
FMTSNA command 53

Index 299

Loglist Utility (continued)
HEADER command 54
INFO command 54
JCL, example of 37
LOG command 54
log record types, format of 25
MSGTXT command 55
MTRC command 55
NOCNSL command 48
NOCTRC command 48
NODATA command 49
NODSPLY command 50
NOFMT command 53
NOHDR command 55
NOINFO command 54
NOLOG command 54
NOMTRC command 55
NOSTRC command 56
NOVERIFY command 60
NTWRK command 56
output, examples of 39, 43
P command 56
return code 43
RUN command 56
running 35
STRC command 56
TCPIP command 57
TERM command 57
TIME command 58
TP command 59
TSO CLIST, example of 39
UPCASE command 59
VERIFY command 60
VERIFY command with 28, 33
VTAMAPPL command 60
WSim/ISPF Interface, running

under 36
logoff function, ITPECHO 155
logoff function, non-3270 device 156
LU command 94
LU command, ITPLSGEN 217

M
MASK command 103
menus

IDC Add STL Statements Panel 186,
187

IDC Change Escape Key Panel 189
IDC Change Log Data Sets Panel 188
IDC Escape Actions Panel 184
IDC Generate Message Generation

Deck Panel 194
IDC Generate STL Program

Panel 191
IDC Main Panel 181
IDC Start Session Panel 182

message generation deck name, defining
(ITPLSGEN) 216

message generation deck, generating
(ITPLSGEN) 217

message logging
data messages 166
description of 163
time stamping 164
types of records 163

message trace records 27

MSGTXT command
Log Compare Utility 95
Loglist Utility 55
Response Time Utility 140

MSGTXT command, ITPLSGEN 216
MSGTXT decks

capturing terminal data, methods
of 232

problems and solutions 255
MTRC command 55

N
NetView Performance Monitor (NPM)

description 233
reformatting data from 221, 235

NOCNSL command 48
NOCTRC command 48
NODATA command 49
NODELAY command 242
NODELAY command, ITPLSGEN 218
NODSPLY command 50
NOFMT command 53
NOHDR command 55
NOINFO command 54
NOLIMIT command 243
NOLIST command 243
NOLOG command 54
NOMTRC command 55
NONTWRK command 244
NORESP command 245
NOSEQOUT command 245
NOSMSG command 158
NOSTRC command 57
NOTRACE command

Response Time Utility 158
NOVERIFY command 60
NOVERIFY command, ITPLSGEN 219
NTWRK command 244

Log Compare Utility 95
Loglist Utility 56
Response Time Utility 141

O
OUTPUT command, ITPLSGEN 216
output, specifying (ITPLSGEN) 216
overall selection control commands 46
overriding script verification,

ITPLSGEN 219
overriding user delays, ITPLSGEN 218

P
P command

Log Compare Utility 105
Loglist Utility 56
Response Time Utility 141

P command, ITPLSGEN 219
PARSESS operand 156
partitions 240
PASSWD parameter 157
PERCENT command 141
preprocessor

Cross Reference Report, example
of 16

preprocessor (continued)
Cross Reference Report, using 16
description of 11
execution parameters 19
input 11
JCL, example of 19
output 12
output, examples of 14, 16
PREP statement 12
return codes 21
running 18
TSO CLIST, example of 21
WSim/ISPF Interface, invoking 18

primary resource selection control
commands 46

PROCESS command 142
process commands, description of 68
PROCESS, ACTUAL operand 114, 142
PROCESS, SYSTEM operand 114, 142

R
receive (RECV) records 206
record

informational 26
log 27
log data set, types of 25
log display attribute table header 34
Loglist Utility log header 33
Loglist Utility log, types of 35
MSGTRACE 27
SNA resource 25
STL trace 27
TCP/IP resource 26

record selection control commands 46
reformatting trace output

with ITPLU2RF 221
with ITPVTBRF 235

repeat previous function 155
repetition function 154, 155
REPORT command 105, 142
REPORT command, ITPSGEN 244
resource selection control commands 46
RESP command 245
response listing file 111
response time accuracy 114
Response Time Frequency

Distribution 112
response time reports

description of 108
levels of 107
reading 107, 113

Response Time Utility
* (comment) command 149
APPCLU command 130
BTRANS command 131
CGRAPH command 134
command syntax 130
control commands 129
Cumulative Response Time

Distribution 112
Cumulative Response Time

Distribution, example of 125
description of 107
END command 134
ETRANS command 135
execution parameters 119

300 WSim V1R1 Utilities Guide

Response Time Utility (continued)
EXIT command 137
EXTERM command 138
GRAPH command 139
HEADER command 139
JCL, example of, on disk 121
JCL, example of, on tape 120
JCL, using 120
LENGTH command 140
MSGTXT command 140
NTWRK command 141
output, examples of 122, 127
output, list of reports 107, 113
P command 141
PERCENT command 141
PROCESS command 142
REPORT command 142
response listing file 111
Response Time Frequency

Distribution 112
Response Time Frequency

Distribution, example of 124
return code 127
RUN command 143
storage requirements 118
TCPIP command 144
TERM command 145
terminal report, example of 122
TGRAPH command 146
TIME command 147
Time Graph of Responses 112
Time Graph of Responses, example

of 126
TPRINT command 147
transaction record listing 110
transaction records listing, example

of 123
TRUNC command 148
TSO CLIST, example of 121
TSO, running under 121
UNLOCK command 148
user exit routines 120
VTAMAPPL command 149
WSim/ISPF Interface, running

under 119
response times

analyzing 107
calculating 113
Cumulative Response Time

Distribution 112
device dependencies 114
Response Time Frequency

Distribution 112
rules for calculating 114
Time Graph of Responses 112
transactions as delimiters 115

return codes
ITPIDC 211
ITPLU2RF 229
ITPSGEN 251
ITPVTBRF 237

RUN command
Log Compare Utility 106
Loglist Utility 56
Response Time Utility 143

RUN command, ITPLSGEN 220

running ITPLSGEN
specifying execution parameters 215
using CLISTs 214
using JCL 214
using the WSim/ISPF Interface 214

running ITPLU2RF
specifying execution parameters 223
using CLISTs 222
using JCL 222
using the WSim/ISPF Interface 223

S
Script Generator Utility, description 231,

247
secondary resource selection control

commands 46
SELECT command 96
selection commands, description of 66
selector pen 240
SEQOUT command 245
simulated resource type codes, list

of 161
SLR ALL 111
SMF 111
SMSG command 158
SNA resource record 25
sorting trace data 237
specifying a device, ITPLSGEN 217
specifying input, ITPLSGEN 216
specifying output, ITPLSGEN 216
START command 97
starting IDC

defining the job stream 178
running IDC as a batch job 178
running IDC as a started

procedure 178
running IDC from a CLIST 179
running IDC from the WSim/ISPF

Interface 178
specifying execution parameters 179

starting ITPLSGEN 220
STL command, ITPLSGEN 217
STL program name, defining

(ITPLSGEN) 216
STL program, generating

(ITPLSGEN) 217
STL trace records 27
STRC command 56
Summary Report 76
Summary Report (SNA 3270 Reformatter

Utility) 223
switch tests 31
synchronizing

with control commands 70
with selection commands 70

SYNCPOINT command 98

T
TCP/IP resource records 26
TCPIP command

Log Compare Utility 99
Loglist Utility 57
Response Time Utility 144

Telnet 3270 clients, simulating
time stamping messages 165

TERM command
Log Compare Utility 99
Loglist Utility 49, 57
Response Time Utility 145

terminal traffic system, capturing 233
terminal traffic, single, capturing 232
terminal types supported by

ITPSGEN 240
tests

counter 32
cursor position 30
data 29
event 30
switch 31

TGRAPH command 146
TIME command

Loglist Utility 58
Response Time Utility 147

TIME command, ITPSGEN 246
Time Graph of Responses 112
time graph parameters 146
time stamps

description of 164
for message data records 165
for records that are not message data

records 164
with Telnet 3270 or FTP client

simulation 165
with VTAMAPPL simulation 165

TP command 59
TPRINT command 147
TRACE command

Response Time Utility 158
tracing system activity

where to trace 235
with Generalized Trace Facility

(GTF) 234
with NetView Performance Monitor

(NPM) 233
with user-written traces 234
with VTAM Buffer Trace 234

transaction processing
BTRANS and ETRANS

commands 115
examples 116, 118
starting 115
to compute response time 115

transaction record listing 110
transaction type 115
transmit (XMIT) records 206
trigger field AID 240
TRUNC command 148
type codes, simulated resources 161

U
understanding DSPY records

comparing, multiple devices 66
comparing, one device 64

UNLOCK command 148
UPCASE command 59
UPPERCASE command 106
user delays, defining (ITPLSGEN) 218
user delays, overriding (ITPLSGEN) 218

Index 301

user exit routines, Response Time
Utility 120

V
Verification Reports

counter tests, contents for 32
cursor position tests, contents for 30
data tests, contents for 29
event tests, contents for 30
example of 28
fields of condition, expected value,

and actual 28
reading 28
switch tests, contents for 31

Verification Summary Reports
example of 33
reading 33

verification, overriding (ITPLSGEN) 219
VERIFY command 60
VERIFY command, ITPLSGEN 219
verifying scripts, ITPLSGEN 219
virtual storage for the Response Time

Utility 118
VTAM Buffer Trace 234
VTAMAPPL command

Log Compare Utility 100
Loglist Utility 60
Response Time Utility 149

VTAMAPPL simulation
time stamping messages 165

W
WRITE command 154
WSim command, ITPLSGEN 217
WSim/ISPF Interface

invoking 5
overview 5
setting up 5

302 WSim V1R1 Utilities Guide

����

Printed in USA

SC31-8947-01

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	How to use this book
	Where to find more information

	Part 1. General utilities
	Chapter 1. Introducing WSim utilities
	What is Workload Simulator?
	WSim general utilities programs
	Script generating utility programs
	Interactive Data Capture
	Log Script Generator Utility
	SNA 3270 Reformatter Utility
	Script Generator Utility
	TCP/IP Trace Script Generator Utility

	Chapter 2. Running WSim with the WSim/ISPF Interface
	Invoking the WSim/ISPF Interface
	Getting help from the WSim/ISPF Interface
	Navigating the panels
	Entering data on panel fields
	Entering and processing commands on the command line
	Entering data set information

	Using function keys

	Chapter 3. Using the Preprocessor and ITPSYSIN to preprocess WSim scripts
	Using the Preprocessor
	Understanding Preprocessor input
	Understanding Preprocessor output
	Using the cross-reference report
	Reading the cross-reference report

	Running the Preprocessor
	Using the WSim/ISPF Interface
	Using Preprocessor execution parameters
	Using JCL
	Using a TSO CLIST

	Understanding Preprocessor return codes

	Using ITPSYSIN
	Understanding ITPSYSIN input and output
	Running ITPSYSIN
	Using the WSim/ISPF Interface
	Using JCL
	Using a TSO CLIST

	Understanding ITPSYSIN return codes

	Chapter 4. Using the Loglist Utility to format the log data set
	Information you can obtain with the Loglist Utility
	SNA resource records
	TCP/IP resource records
	Loglist data output and display
	Informational records
	LOG records
	Message trace records
	STL trace records
	CPI-C trace records
	Verification reports
	Verification Detail Reports
	Verification Summary Reports

	Log record header
	Log display attribute table header
	Running the Loglist Utility
	Coding the output format
	Using the WSim/ISPF Interface
	Using Loglist Utility execution parameters
	Using JCL
	Using a TSO CLIST
	Understanding sample output
	Understanding Loglist Utility return codes

	Chapter 5. Specifying loglist control commands
	Coding the control commands
	Understanding control command coding conventions
	Control command categories
	General control commands
	Record selection
	APPCLU primary resource selection command
	CNSL and NOCNSL data type selection commands
	CTRC and NOCTRC data type selection commands
	DATA and NODATA data type selection commands
	DEV secondary resource selection command
	DSPLY and NODSPLY data type selection commands
	END control command
	EXDEV secondary resource selection command
	EXIT control command
	EXTERM secondary resource selection command
	EXTP secondary resource selection command
	FMTSNA and NOFMT control commands
	HEADER control command
	INFO and NOINFO data type selection commands
	LOG and NOLOG data type selection commands
	MSGTXT overall selection command
	MTRC and NOMTRC data type selection commands
	NOHDR data type selection command
	NTWRK overall selection command
	P control command
	RUN control command
	STRC and NOSTRC data type selection commands
	TCPIP primary resource selection command
	TERM secondary resource selection command
	TIME overall selection command
	TP secondary resource selection command
	UPCASE control command
	VERIFY and NOVERIFY data type selection commands
	VTAMAPPL primary resource selection command
	* control command

	Chapter 6. Using the Log Compare Utility to compare log data sets
	Understanding DSPY records
	Comparing DSPY records using the Log Compare Utility
	Identifying differences in DSPY records
	Comparing DSPY records in networks with multiple devices

	Controlling what is compared
	Understanding selection commands
	Understanding process commands

	Synchronizing two log data sets
	Specifying synchronization with selection commands
	Example of log data set synchronization

	Information you can obtain with the Log Compare Utility
	Active Command List
	Complete Records List
	Compare List
	Differences Report
	Summary Report

	Running the Log Compare Utility
	Using the WSim/ISPF Interface
	Using Log Compare Utility execution parameters
	Data set requirements
	Using JCL
	Using a TSO CLIST
	Understanding sample output
	Active Command List
	Complete Records List
	Compare List
	Differences Report
	Summary Report

	Understanding Log Compare Utility return codes

	Chapter 7. Specifying Log Compare Utility control commands
	Coding the control commands
	Understanding control command coding conventions
	Selection commands
	DEV command
	ERRCOUNT command
	EXCLUDE command
	LU command
	MSGTXT command
	NTWRK command
	SELECT command
	START command
	SYNCPOINT command
	TCPIP command
	TERM command
	VTAMAPPL command

	Process commands
	ATTRIBUTE command
	CHARATTR command
	CHECKONLY command
	CURSOR command
	END command
	HEADER command
	MASK command
	P command
	REPORT command
	RUN command
	UPPERCASE command
	* Command

	Chapter 8. Using the Response Time Utility to analyze response times
	Information you can obtain with the Response Time Utility
	Response time reports
	Transaction record listing
	Response listing file
	Response Time Frequency Distribution
	Cumulative Response Time Distribution
	Time Graph of Responses

	Running the Response Time Utility
	Calculating response times for terminals
	Rules for calculating response times
	Response time accuracy
	Device dependencies

	Calculating response times for transactions
	Transaction processing
	Transaction processing examples

	Estimating virtual storage
	Using the WSim/ISPF Interface
	Using Response Time Utility execution parameters
	Using JCL
	Using a TSO CLIST
	Understanding sample output
	Understanding Response Time Utility return codes

	Chapter 9. Specifying Response Time Utility control commands
	Coding the control commands
	Understanding control command conventions
	APPCLU—Define an APPC LU for response time analysis
	BTRANS—Begin transaction definition
	CGRAPH—Define scale for cumulative distribution graph
	END—End response time processing
	ETRANS—End transaction definition
	EXIT—Define user exit
	EXTERM—Exclude terminal
	GRAPH—Define scale for frequency distribution graph
	HEADER—Define output report header
	LENGTH—Define minimum record lengths
	MSGTXT—Define a message generation deck for response time analysis
	NTWRK—Define a network for response time analysis
	P—Terminate console input
	PERCENT—Define percentile values
	PROCESS—Define response time type
	REPORT—Define output options
	RUN—Perform response time analysis
	TCPIP—Define a TCP/IP connection for response time analysis
	TERM—Define a terminal for response time analysis
	TGRAPH—Define time graph parameters
	TIME—Specify time limits
	TPRINT—Print list of transaction records
	TRUNC—Truncate time stamps
	UNLOCK—Define use of keyboard unlock messages
	VTAMAPPL—Define a VTAMAPPL for response time analysis
	*—Comment

	Chapter 10. Using ITPECHO to test WSim simulated resources
	Understanding ITPECHO requirements
	Programming requirements
	Storage requirements
	SNA considerations
	The BIND

	Functions available with 3270 devices
	Enter—Echo function
	PF5—Automatic string/repetition function
	PF6—Automatic String/Repetition Function with Definite Response Requested
	PF9—Repeat previous function
	Clear—Clear and reformat the panel function
	Logoff—Terminate the session function
	Other AIDs—Echo function

	Functions available with non-3270 devices
	Echo
	Logoff

	Installing ITPECHO
	Running ITPECHO
	Using ITPECHO execution parameters
	Using JCL
	Using a TSO CLIST

	Using ITPECHO operator commands
	Logging on to ITPECHO
	Understanding ITPECHO return codes

	Chapter 11. Simulated resource type codes
	Chapter 12. Understanding message logging
	What is message logging?
	How messages are time stamped
	Time stamps for records that are not message data records
	Time stamps for message data records
	VTAMAPPL simulation
	CPI-C transaction program simulation
	TCP/IP client simulation

	How data messages are logged
	Logging FTP command data and FTP file data

	CPI-C transaction program message logging

	Chapter 13. Using the TCP/IP Trace Utility
	Running the TCP/IP Trace Utility
	Using the WSim/ISPF Interface
	Using TCP/IP Trace Utility execution parameters
	Using JCL
	Understanding TCP/IP Trace Utility return codes

	Chapter 14. Using the TCP/IP Trace Formatting Utility
	Running the TCP/IP Trace Formatting Utility
	Using the WSim/ISPF Interface
	Using JCL
	Using a TSO CLIST
	Understanding TCP/IP Trace Formatting Utility return codes

	Part 2. Script generating utilities
	Chapter 15. Generating scripts interactively with IDC
	Setting up IDC
	Defining IDC to VTAM
	Allocating IDC data sets

	Starting IDC
	Defining the IDC job stream
	Running IDC from the WSim/ISPF Interface
	Running IDC as an MVS batch job
	Running IDC as an MVS started procedure
	Running IDC from a CLIST
	Specifying execution parameters

	Establishing sessions
	Logging on to IDC
	Logging on to your application

	Capturing the data
	Capturing the session initiation
	Using escape actions
	Controlling data capture
	Adding statements to the IDC log
	Changing log data sets
	Changing escape keys
	Capturing session termination

	Stopping IDC
	Generating scripts
	Choosing the type of script to generate
	Generating an STL program
	Generating a message generation deck
	Adding panel verification logic to the script
	Generating user delays

	Modifying IDC-generated scripts
	Using help
	Debugging problems
	Analyzing the IDC log
	Analyzing the IDC trace
	Understanding IDC restrictions

	Creating network definitions
	Controlling the flow of script execution
	Synchronizing multiple scripts
	Understanding IDC return codes

	Running WSim
	Generating Telnet 3270 scripts

	Chapter 16. Generating scripts from IDC or WSim log data sets
	Setting up ITPLSGEN
	Running ITPLSGEN
	Using JCL to run ITPLSGEN
	Using a CLIST to run ITPLSGEN
	Running ITPLSGEN from the WSim/ISPF Interface
	Specifying execution parameters

	Using control commands
	Entering control commands
	Defining the STL program or message generation deck name
	Specifying input and output
	Choosing the type of script to generate
	Specifying devices
	Defining user delays
	Generating changed data fields
	Verifying panels
	Entering commands from the input data stream
	Generating debugging comments
	Starting ITPLSGEN
	Ending ITPLSGEN

	Generating the output

	Chapter 17. Generating 3270 scripts from captured traces
	Planning to use the SNA 3270 Reformatter Utility
	Allocating SNA 3270 Reformatter Utility data sets
	Running the SNA 3270 Reformatter Utility
	Running the SNA 3270 Reformatter Utility as a batch job
	Running the SNA 3270 Reformatter Utility from an MVS CLIST
	Running the SNA 3270 Reformatter Utility from the WSim/ISPF Interface
	Specifying execution parameters

	Understanding SNA 3270 Reformatter Utility output
	Understanding the Summary Report
	Understanding the Eligible Terminal Report
	Understanding the Ineligible Terminal Report

	Using the WSim log data set
	Formatting the WSim log data set
	Generating a WSim script
	Calculating response times
	Comparing WSim log data sets

	Understanding SNA 3270 Reformatter Utility restrictions
	SNA 3270 Reformatter Utility return codes

	Chapter 18. Using the Script Generator Utility
	Operational suggestions
	Capture single terminal traffic
	Capture system terminal traffic

	Step 1. Obtaining a trace of system activity
	NPM VTAM Log
	Reformatting

	VTAM buffer trace
	Limitations
	Reformatting

	Your own capture routine
	Where to take the trace

	Step 2. Reformatting the trace output
	ITPVTBRF
	Running ITPVTBRF from the WSim/ISPF Interface
	Using JCL to run ITPVTBRF
	New ITPVTBRF execution parameters
	ITPVTBRF return codes

	Step 3. Sorting the trace data
	Step 4. Defining the network
	Step 5. Generating the message generation decks
	ITPSGEN terminal types supported
	Running ITPSGEN
	ITPSGEN execution parameters
	ITPSGEN data set requirements

	ITPSGEN control commands
	Understanding control command description conventions

	DELAY and NODELAY commands
	LIMIT and NOLIMIT commands
	LIST and NOLIST commands
	NTWRK and NONTWRK commands
	REPORT command
	RESP and NORESP commands
	SEQOUT and NOSEQOUT commands
	STL and NOSTL commands
	TIME commands
	* Comment

	ITPSGEN message generation decks
	ITPSGEN updated networks
	ITPSGEN sequential output format
	ITPSGEN printed output
	SEQOUT data set
	Sample SEQOUT data set
	ITPSGEN return codes
	Sample output for ITPSGEN
	Summary Report
	Detail Report

	Using JCL to run ITPSGEN
	Using a CLIST to run ITPSGEN
	Running ITPSGEN from the WSim/ISPF Interface
	STL translation
	Sample JCL for STL translation
	Data compression
	Summary report

	Problems and possible solutions
	CPI-C script generation support
	Function overview
	Tracing considerations
	VTAM buffer trace
	OS/2 Communications Manager (CM/2) trace
	IBM Communications Server trace
	Tracing dependencies and restrictions
	Traces containing multiple TPs or conversations
	Full-duplex sessions
	VTAM buffer traces

	Automatic script generation considerations
	Network definitions
	Sample model network

	Changes to JCL and CLISTs
	Sample JCL
	Sample TSO CLIST

	Changes to the WSim/ISPF Interface
	ITPSGEN control commands
	COMP and NOCOMP commands
	FIELD and NOFIELD commands
	HEXON and NOHEXON commands
	SENDL and NOSENDL commands
	UCD and NOUCD commands

	STL translation
	Sample JCL for STL translation
	CPICVARA STL include file

	VTAM system definitions

	Chapter 19. 3270 password masking
	Interactive Data Capture (IDC)
	ITPLU2RF
	ITPLSGEN
	WSim simulator ITPENTER
	Loglist utility ITPLL
	Compare utility ITPCOMP
	ITPGNKYZ utility to generate encryption key/IV USERMOD

	Chapter 20. Work Station Trace Reformatter Utility
	Trace output format requirements
	Example: CM/2 trace record

	Executing ITPWSTRF under MVS

	Chapter 21. Generating STL from TCP/IP traces
	Setting up ITPIPGEN
	Running ITPIPGEN
	Using JCL to run ITPIPGEN
	Using a CLIST to run ITPIPGEN
	Running ITPLSGEN from the WSim/ISPF Interface
	Specifying execution parameters

	Using control commands
	Entering control commands
	Specifying the client IP address
	Specifying the server port
	Defining the STL program name
	Specifying input and output
	Defining the network name
	Verifying server responses
	Starting ITPIPGEN
	Ending ITPIPGEN

	Part 3. Appendixes
	Notices
	Trademarks and service marks

	Glossary
	Bibliography
	WSim library
	Related publications

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

